

UNIVERSIDADE FEDERAL DE RORAIMA PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM RECURSOS NATURAIS

LETICIA GODINHO PEZENTE

CARACTERISTÍCAS GLICÍDICAS E MICROBIOLÓGICAS DE MÉIS DE Apis mellifera PRODUZIDOS EM RORAIMA

Boa Vista

LETICIA GODINHO PEZENTE

CARACTERISTÍCAS GLICÍDICAS E MICROBIOLÓGICAS DE MÉIS DE Apis mellifera PRODUZIDOS EM RORAIMA

Dissertação apresentada à Universidade Federal de Roraima, como parte das exigências do Programa de Pós-graduação em Recursos Naturais, para obtenção do título de Mestre em Recursos Naturais, com área de concentração em Bioprospecção.

Orientador: Dr. Marcos José Salgado Vital

Dados Internacionais de Catalogação na Publicação (CIP) Biblioteca Central Maria Auxiliadora de Souza Melo

P521c Pezente, Leticia Godinho.

Características glicídicas e microbiológicas de méis de *Apis mellifera* produzidos em Roraima / Leticia Godinho Pezente. — Boa Vista, 2011.

115f.

Orientador: Prof^o. Dr^o Marcos José Salgado Vital. Dissertação (mestrado) – Universidade Federal de Roraima. Programa de Pós-Graduação em Recursos Naturais

1 - CLAE. 2 - ACP. 3 - Mel. 4 - Leveduras. 5 - Roraima. I - Título. II - Vital, Marcos José Salgado (orientador).

CDU - 638.16

LETICIA GODINHO PEZENTE

CARACTERISTICAS GLICÍDICAS E MICROBIOLÓGICAS DE MÉIS DE APIS MELLIFERA PRODUZIDOS EM RORAIMA

Dissertação apresentada como pré-requisito para conclusão do Curso de Mestrado em Recursos Naturais da Universidade Federal de Roraima, defendida em 18 de março de 2011 e avaliada pela seguinte Banca Examinadora:

eral de Roraima, defendida em 18 de março de 2011
iada pela seguinte Banca Examinadora:
1000000
Prof. Dr. Marcos José Salgado Vital
Orientador - UFRR
Dohisha Flach
Prof. Dra. Adriana Flach
Membro - UFRR
Carollo 3rhe
Profa, Dra, Gislene Almeida Carvalho Zilse
Membro - INPA
\mathcal{A}
Site
Profa. Dra. Lucianne Braga Oliveira Vilarinho
Membro - UFRR
Wiellier Of Titl

Prof. Dr. Silvio José Reis da Silva Membro - MIRR

AGRADECIMENTOS

Meus agradecimentos às pessoas e instituições que contribuíram para a realização deste trabalho, em especial:

Á Universidade Federal de Roraima.

Ao PRONAT – Programa de Pós-graduação em Recursos Naturais.

A CAPES pelo apoio financeiro.

Aos apicultores João Almeida e Sartô pelas informações e doação de amostras para análises.

Às Dra. Mariem Rodrigues Ribeiro Cunha e Maria de Fátima Gomides, da Fundação Ezequiel Dias, pela paciência no acompanhamento da realização das análises físico-químicas.

Ao Dr. Haroldo Pimentel Trajano e a Dra. Ana Maria Lopes da Nóbrega, da Diretoria do Conselho Regional de Medicina Veterinária pelo apoio e por facilitar do meu aprimoramento.

À Laura Cardoso, do Laboratório Central de Roraima, pela ajuda nas análises microbiológicas.

Aos meus colegas de Mestrado, especialmente ao José Antônio Villac de Farias e Francisca Edjane Marcelino Magalhães.

Ao Dr. Rodolfo Pereira, por acreditar na importância do aprimoramento dos servidores estaduais.

Ao Dr. Marcos José Salgado Vital pela orientação.

Ao Dr. Henrique Eduardo Bezerra da Silva por verificar a clareza das informações sobre cromatografia e estatística.

Ao Dr. Reinaldo Imbrósio Barbosa pela ajuda para encontrar os erros.

Ào Pesquisador Azoisio Vilarinho e a Professora Lucianne Braga Vilarinho pela ajuda com os dados estatísticos.

Ao meu amor, Anderson Martins de Mello, a melhor parte dos meus dias, por tudo: pela ajuda na dos cálculos estatísticos, pela paciência, pelo apoio.

As abelhas...

E por fim, ao Rafael...

RESUMO

O mel é um produto natural produzido pelas abelhas melíferas a partir do néctar de flores (mel floral), ou de secreções provenientes das partes vivas das plantas e excreções de insetos sugadores de plantas (mel de melato). A composição e as características do mel, como sabor, aroma, coloração, densidade e tendência à cristalização, variam de acordo com a flora local, pois estão relacionadas aos componentes do néctar das diversas flores, assim como à proporção em que estão presentes. Vinte e nove amostras de méis de Apis mellifera, das principais regiões produtoras em Roraima, dos municípios de Boa Vista, Cantá e Mucajaí, foram analisadas por Cromatografia Líquida de Alta Eficiência (CLAE) para quantificação de seis açúcares: glicose, frutose, sacarose, maltose, erlose e melezitose com o objetivo de conhecer características próprias dos méis. O número de leveduras foi quantificado pelo método clássico de contagem de bolores e leveduras para tentar estabelecer uma relação entre o resultado dos teores de açúcares e a presença de leveduras nas amostras. A média dos valores encontrados foi de 34,25% para frutose, 33,25% para glicose, 5,76% para sacarose, 2,7% para maltose, 0,43% para erlose e 0,17% para melezitose, enquanto a média para açúcares redutores foi de 67,69%. O resultado da contagem de bolores e leveduras foi de 41,38% ou 12 amostras acima de limite estabelecido pela legislação em vigor de 10UFC.g⁻¹. Foi realizada a Análise de Componentes Principais (ACP) e Análise de agrupamentos para avaliar influência da variância entre as amostras. Os resultados indicaram a sacarose e a contagem de bolores e leveduras como as características que mais influenciaram o agrupamento.

Palavras-chaves: CLAE; ACP; Mel; Leveduras; Roraima.

ABSTRACT

Honey is a natural product produced by honey bees from the nectar of flowers (floral honey), or from secretions of living parts of plants or excretions of plant-sucking insects (honeydew honey). The composition and properties of honey, such as flavor, aroma, color, density and tendency to crystallization, vary according to local flora, since they are related to components of the nectar of various flowers as well as the proportion that are present. Twenty-nine samples of honey, of Apis mellifera, of the main producing areas in Roraima, the municipalities of Boa Vista, Mucajaí and Cantá were analyzed by High Performance Liquid Chromatography (HPLC) for quantification of six sugars: glucose, fructose, sucrose, maltose, and melezitose erlose in order to establish characteristics of honeys. The number of yeasts was determined by the classical method of counting yeast and molds to try to establish a relationship between the outcome of the levels of sugars and the presence of yeast in the samples. The average value found was 34.25% for fructose, 33.25% for glucose, 5.76% for sucrose, maltose 2.7%, 0.43% to 0.17% for erlose and melezitose, whereas the average for reducing sugars was 67.69%. The result of the count of yeasts and molds was 41,38% or 12 samples above the limit set by the law of 10UFC.g-1. We performed Principal Component Analysis (PCA) and cluster analysis to evaluate the influence of the variance between samples. Results indicated sucrose and yeast count as characteristics that most influenced the grouping.

Keywords: HPLC; PCA; Honey; Yeasts; Roraima.

LISTA DE TABELAS

Tabela 1	Data de coleta, tipo de mel, município e fitofisionomias de onde as amostras de méis produzidos por A <i>pis mellifera</i> foram coletadas para análise.	33
Tabela 2	Concentrações de açúcares utilizadas para construção da curva dos açúcares glicose, frutose, sacarose e maltose presentes em maiores nas amostras de mel.	38
Tabela 3	Concentrações de açúcares utilizadas para construção da curva dos açúcares erlose e melezitose presentes em menores quantidades nas amostras de mel.	38
Tabela 4	Característica de cristalização observada nas amostras após armazenamento sob refrigeração e o resultado da razão entre frutose e glicose de cada uma das amostras analisadas.	44
Tabela 5	Resultados médios, valores mínimos, valores máximos e coeficientes de variação dos açúcares encontrados nas amostras de méis de Roraima.	45
Tabela 6	Valores estabelecidos pela Legislação Brasileira, Legislação Mercosul e do <i>Codex Alimentarius</i> para açúcares redutores e sacarose para mel floral e valores médios obtidos nas amostras de méis em Roraima.	47
Tabela 7	Resultado das Correlações de Pearson para as variáveis das amostras de méis estudadas.	56
Tabela 8	Resultado da cristalização e dos valores médios das triplicatas das características físico-químicas, microbiológicas cristalização das amostras de méis de Roraima.	58

Tabela 9 Tabela de contribuição das componentes em relação a variação das 59 amostras de méis estudadas.

LISTA DE FIGURAS

Figura 1	Mapa georeferenciado dos pontos de coleta onde se encontraram os apiários, nos quais as amostras de méis produzidos por A <i>pis mellifera</i> foram coletadas para análise.	32
Figura 2	Cromatograma comparativo entre a fase móvel composta de 78% de acetronitrila, 17% de água ultrapura e 5% de metanol e a fase móvel com 80% de acetronitrila, 15% de água ultrapura e 5% de metanol na separação dos açúcares nas amostras de méis analisados.	36
Figura 3	Cromatograma comparativo entre os picos de menor concentração, 0,25mg/mL ou ponto 4, representado pela linha vermelha e o de maior concentração, 3,0mg/mL ou ponto 10, representado pela linha azul, da curva de açúcares.	39
Figura 4	Cromatograma demonstrando os picos respectivos da acetronitrila, frutose, glicose, sacarose, maltose, açúcar não determinado, erlose e melezitose da amostra 1A (APÊNDICE F).	39
Figura 5	Cromatograma comparativo entre os picos respectivos da acetronitrila, frutose, glicose, sacarose, maltose, açúcar não determinado, erlose, melezitose da amostra 23A, representada pela linha azul e da amostra 23A fortificada, representada pela linha verde.	40
Figura 6	Cromatograma comparativo entre os picos respectivos da acetronitrila, frutose, glicose, sacarose, maltose, açúcar não determinado, erlose,	40

melezitose da amostra 01 diluída, representada pela linha verde, e da

amostra 01 diluída e fortificada, representada pela linha azul.

Figura 7	Influência das variáveis sobre as amostras de méis estudadas.		
Figura 8	Comportamento das amostras quanto a similaridade em relação as variáveis.	61	
Figura 9	Dendograma das variáveis físico-químicas e microbiológicas das	62	

amostras de méis estudadas.

SUMÁRIO

RESUMO	
ABSTRACT	
LISTA DE TABELAS	
LISTA DE FIGURAS	
1 INTRODUÇÃO	14
1.1 MÉTODOS UTILIZADOS PARA CLASSIFICAÇÃO DE AMOSTRAS DE MÉIS	20
1.2 INFLUÊNCIA DOS MICRORGANISMOS NOS AÇÚCARES DO MEL	27
2 OBJETIVO	31
2.1 OBJETIVOS ESPECÍFICOS	31
3 MATERIAIS E MÉTODOS	32
3.1 AMOSTRAGEM	32
3.2 CARACTERIZAÇÃO DAS ÁREAS	32
3.3 QUANTIFICAÇÃO DE AÇUCARES	35
3.4 PREPARO DAS AMOSTRAS	35
3.5 RELAÇÃO ENTRE CONCENTRAÇÃO DE FRUTOSE E CRISTALIZAÇÃO DE	
AMOSTRAS	
3.6 ANÁLISE DE BOLORES E LEVEDURAS	36
4 RESULTADOS E DISCUSSÃO	37
4.1 RESULTADOS DA VALIDAÇÃO DO MÉTODO	37
4.1.1 DETERMINAÇÃO DA FÁSE MÓVEL	37
4.1.2 CONFECÇÃO DA CURVA	
4.1.3 VALIDAÇÃO DO MÉTODO	41
4.1.4 CÁLCULO DOS RESULTADOS	42
4.2 RESULTADOS DAS ANÁLISES	43
4.2.1 TEORES DE AÇÚCARES REDUTORES	43
4.2.2 TEOR DE SACAROSE	48
4.2.3 TEOR DE MALTOSE	50
4.3 ANÁLISES MICROBIOLÓGICAS	53
5 CONCLUSÃO	64
REFERÊNCIAS	65
APÊNDICES	78

1 INTRODUÇÃO

O mel das Américas é descrito na literatura desde o descobrimento pelos europeus, seja em rituais de fé, de cura ou como alimento. Está envolvido em muitos mitos do cotidiano indígena, como descreveu Lévi-Strauss (1970) durante o contato com as populações indígenas das Américas, razão pela qual, provavelmente, até os dias de hoje, continua sendo utilizado como medicamento, mesmo pelas populações urbanas.

Porque pelas muitas árvores, de que abundam os campos, nas tocas delas criam o seu favo de mel inumeráveis abelhas, e também na terra por buracos dela em tanta quantidade que para se haver de colher não é necessário mais que um machado, com o qual a poucos golpes se fura a árvore, e um vaso para recolher o mel, que se lança, que é em tanta quantidade que somente dele, sem mais outro mantimento, se sustentam muitas gentes (BRANDÃO apud HUE, 2008, p. 194).

Brandão (1956) escreve a respeito da presença do mel no cotidiano dos índios na dieta, acompanhando peixes, carnes, aves e sobre ofertar, aos europeus, como presente na descoberta das Américas. Descreve tanta fartura que os jesuítas já não mais queriam consumi-lo. Thevet (1978) fala sobre o papel do mel na medicina indígena na cura de problemas de visão, da picada das abelhas na cura de "excesso de sangue no corpo" e relata os sistemas de classificação das populações indígenas.

As populações indígenas interagem com seu meio ambiente mantendo um incansável relacionamento com seu habitat. Tal interação proporciona a essas populações acumular uma sabedoria que inclui não apenas uma compreensão do todo, mas justifica sua relação específica com o entendimento dos fenômenos naturais como a umidade, a luminosidade, a floração, o vento, as chuvas, o frio, o calor, as marés, além de um conhecimento sobre diferentes espécies que compõem a biodiversidade. Classificam o ambiente, os substratos e sempre se incluem na composição do todo reconhecendo que dele fazem parte (RODRIGUES, 2005). Não só as populações indígenas, como as populações de maneira geral, determinam um modo de classificação para suas observações, agrupando fatores comuns na lógica daquela comunidade (JARA, 1996).

Sendo um produto pertencente à natureza, ou seja, ao seu habitat, o mel também foi classificado pelas populações indígenas,

Não há porque nos surpreendermos com o fato de a aquisição do mel remontar ao período mítico em que os animais não se distinguiam dos homens, pois o mel, produto selvagem, pertence à natureza. Por este motivo ele deve ter ingressado no patrimônio da humanidade enquanto esta ainda vivia no "estado de natureza", antes que se introduzisse a distinção entre natureza e cultura e, ao mesmo tempo, entre o homem e o animal. É também normal que o mito descreva o mel original como uma planta que germina, cresce e amadurece. Vimos como efeito, que a sistemática indígena situa o mel no reino vegetal (LÉVI-STRAUSS, 2004, p. 65).

Muitas vezes as populações indígenas desconhecem o processo químico que envolve a produção do mel (OLIVEIRA, 2002), portanto, acreditam que as abelhas coletam-no pronto na natureza. Segundo Lévi-Strauss (2004), os índios sul-americanos classificam o mel no reino vegetal porque o encontram, sobretudo, nos ocos das árvores. Descreve ainda diversas crenças, da Idade do Ouro, sobre folhas de árvores secretando mel e abelhas nascerem nas folhagens e das ervas, por geração espontânea. Essa descrição pode ser associada ao fato de as abelhas coletarem, em determinada época, pela falta de néctar nas flores, secreções das partes vivas das plantas que ficam sobre as folhas, como fonte glicídica alternativa para fabricação do mel. Curiosamente, na ciência clássica as abelhas domésticas foram categorizadas por Linnaeus, em 1758, como *Apis mellifera*, erroneamente, já que o nome em latim quer dizer "abelha transportadora", sugerindo que as abelhas só transportam o mel. Tanto que, em 1961, um irmão apicultor de Linnaeus, mudou o nome para *Apis mellifica*, significando "abelha produtora de mel", mas a primeira classificação é que foi considerada (WILSON, 2005).

Outra classificação existe na bipartição dos méis para quase todas as tribos sulamericanas, em doces ou azedos, inofensivos ou tóxicos (LÉVI-STRAUSS, 2004), assim como, para os estudiosos do mel na ciência contemporânea tradicional. Em Roraima, a comunidade científica explica esta classificação com o registro da ocorrência de mel amargo nos municípios do Mucajaí e do Cantá (SILVA, 2005). Silva e Rebouças (1998) atribuíram o gosto do mel amargo da região ao pólen de *Protium* sp., encontrado numa freqüência de 60% nas amostras analisadas. Resultados idênticos encontraram Marques-Souza e Kerr (2003). O gênero *Protium*

sp. foi estudado por Costa (2006) e relatado por toda Floresta Amazônica, com espécies distribuídas da Guiana Francesa até o sul do Estado do Pará. Estudos mais recentes, em Roraima, (SILVA, 2005) atribuem a *Vochysia guianensis* o gosto amargo do mel no Estado. Estas espécies botânicas podem ser responsáveis pelo gosto amargo do mel já relatado pelas comunidades indígenas destas regiões.

As populações indígenas utilizam os méis amargos com finalidades rituais, para provocar vômitos (LÉVI-STRAUSS, 2004). No sul do Brasil, os méis com sabor amargo também são utilizados como medicamento (BARTH, 1990). Neste ponto, entendemos bem o sentido de ciência como atividade orientada com um objetivo. A classificação de ambas as sociedades, neste caso, serve para o mesmo fim e são divididas de forma similar, assim, os méis são amargos ou doces, cada um deles com uma finalidade. No Brasil, tanto para as populações indígenas quanto nas sociedades urbanas, o mel está mais associado a medicamento do que a alimento (RODRIGUES et al., 2008).

Diferente das populações indígenas, o mel foi classificado, pelo Regulamento Técnico de Identidade e Qualidade de Produtos Apícolas, do Ministério da Agricultura (BRASIL, 2000), como produto de origem animal, apesar da matéria-prima coletada e transformada pelas abelhas, para produção de mel, ser inteiramente de origem vegetal (néctar).

O conhecimento sobre o envolvimento das abelhas no processo de transformação do néctar através da enzima invertase, pela comunidade científica contemporânea, fez com que o mel fosse classificado como produto de origem animal; e como o mel é o produto mais importante comercialmente, os produtos derivados, foram classificados a partir dele, numa organização lógica. Neste caso, as classificações não implicam necessariamente num imperativo, porque o conjunto de operações correspondentes tem uma lógica própria para cada sistema, ou seja, utilizando uma ou outra para classificação dos produtos apícolas, em produto de origem animal ou vegetal, a organização estará correta. Wilson (2005) escreveu sobre a dificuldade da classificação dos méis nas épocas remotas:

Na antiga medicina romana, quase todos os alimentos poderiam ser colocados em uma de duas categorias: animal ou vegetal. O mel era diferente. Assim como a abelha não era vista como domesticada nem como silvestre, o mel não era considerado animal nem vegetal, mas status indeterminado entre um e outro. Era vegetal porque vinha basicamente de flores. Mas era animal também porque era aparentemente colhido por abelhas, que eram animais. Devia ser vegetal porque era comido por devotos

vegetarianos seguidores de Pitágoras, a quem repugnava qualquer tipo de carne. Por outro lado, devia ser animal, porque o mel não cresce nas plantas ou no chão. Era quase impossível chegar a uma conclusão nesse debate animal versus vegetal. O mel era *sui generis* (WILSON, 2005, p.85).

Provavelmente a parte mais interessante deste diálogo intercientífico é a correspondência entre o etnoconhecimento do mel, observadas pelas populações indígenas sul-americanas, e a classificação oficial da Superintendência Federal de Agricultura (SFA) para o produto. Segundo a SFA, o mel produzido nas áreas de savanas em Roraima é originado não de nectários florais, mas das partes vivas das plantas, nectários extraflorais e secreções de insetos sugadores (BRASIL, 2000). Classificado, portanto, como mel de melato. Para classificá-lo como melato é necessário, principalmente, que o mel apresente altos valores de sacarose (>6%), baixos teores de açúcares redutores (< 60%), altos valores de sólidos insolúveis em água e minerais, além da cor escura e fluidez constante (BRASIL, 2000). Estas características foram observadas, por Bates, em estudo pela região amazônica: "Há mais de um século, Bates já havia notado que as abelhas das regiões amazônicas obtinham sua nutrição menos das flores do que da seiva das árvores e dos excrementos das aves" (LÉVI-STRAUSS, 2004, p. 46).

Essa observação é comprovada por estudos realizados no mel de Roraima que apresentou característica de mel de melato nas amostras estudadas nos meses secos, entre outubro e março (PEZENTE, 2006). O estudo citado foi feito com a espécie *A. mellifera*, mas tanto as melíponas quanto a *Apis* na época seca, em vegetações abertas, como as savanas, podem visitar o mesmo pasto apícola para produção de mel (OLIVEIRA; CUNHA, 2005).

Ihering (1948) atribuiu a diferença entre as cores e as características físico-químicas, como alta umidade e alto conteúdo de sacarose dos méis, não à vegetação, mas ao tipo de abelha que o produziu. Atribuiu às melíponas da América do Sul os méis escuros e fluidos e as européias os méis claros e que cristalizavam com mais facilidade.

Anacleto et al. (2009), dizem que ainda hoje é discutida uma classificação para méis de meliponídeos com a justificativa de estes méis possuírem padrão próprio e não se adequarem à classificação oficial para alguns caracteres. Souza et al. (2009) comentam a necessidade do mel das espécies de meliponídeos serem classificados separadamente por causa da variação entre os méis ocorrida de uma espécie para outra. Porém, comparando os trabalhos realizados por Anacleto et al. (2009) em São Paulo, por Souza et al. (2009) na Bahia, com o realizado por Alves

et al. (2005) na Bahia, sobre características dos méis de meliponídeos, percebemos que a variação ocorre principalmente em virtude da vegetação, visto que amostras de méis produzidos pela mesma espécie de meliponídeos, em regiões diferentes, têm padrões diversos, principalmente em relação aos teores de açúcares.

A diferença entre os teores de açúcares advém mais da matéria-prima utilizada pelas abelhas e menos da espécie produtora. Estudo realizado por Pezente (2006) sobre as cores dos méis produzidos em Roraima, por *A. mellifera*, utilizando a metodologia descrita no manual "Métodos Analíticos Oficiais para Controle de Produtos de Origem Animal e seus Ingredientes" do Ministério da Agricultura (BRASIL, 1981), concluiu que 29% das amostras de méis tinham coloração âmbar escuro. As amostras que apresentaram cor escura estavam concentradas de outubro a março, principalmente nos meses de dezembro e janeiro, época tradicionalmente mais seca no Estado, confirmando a maior influência da vegetação na produção de mel, já que as fontes utilizadas pelas abelhas mudam ao longo dos meses.

Na época chuvosa, as análises dos méis em Roraima demonstram características similares aos europeus, tanto em relação à cor quanto as propriedades físico-químicas (PEZENTE, 2006). Farias (2006), quantificando alguns parâmetros da legislação em amostras de Roraima, encontrou todas as amostras em conformidade com os parâmetros para mel de flores quanto ao teor de minerais, um dos parâmetros utilizados para diferenciar mel floral de mel de melato.

Ainda são poucos os estudos sobre os méis das regiões de savana, mas o que foi relatado pelos antropólogos e estudiosos das populações indígenas destas regiões, sobre a diferença entre os méis, tem se confirmado em trabalhos realizados na Venezuela e no Mato Grosso do Sul. Piccirillo; Rodriguez; Rodriguez (1998) encontraram parâmetros para os méis da Venezuela que não atendem a legislação internacional em vigor. Marchini (2004) demonstrou que 35% dos méis do Mato Grosso do Sul também não atendem aos padrões estabelecidos pelo Regulamento de Identidade e Qualidade de Produtos Apícolas do Ministério da Agricultura (BRASIL, 2000), para méis de flores, no parâmetro sacarose. Resultados similares foram encontrados por Pezente (2006) em Roraima, onde 27% das amostras não estavam em conformidade para o quesito sacarose. Como as três regiões apresentam vegetações semelhantes, poderíamos supor que grandes quantidades de sacarose devem constituir um elemento de identidade dos méis da região, apesar de ser considerado como um elemento de fraude ou de desvio em relação ao padrão da legislação.

A classificação como melato dos méis de Roraima culminou numa perda de mercado consumidor. O mel de melato ou maná, derivado da substância açucarada que escorre das plantas, muito apreciado antigamente, hoje tem mercado bastante reduzido, apenas em lojas gourmets e após o conhecimento sobre sua origem, ele seria produzido das excreções de afídios acumulados nas folhas das plantas, foi considerado repugnante (WILSON, 2005).

O mel de melato é um caso de extrema dificuldade de classificação. Os esforços visando à diferenciação entre mel floral e o mel de melato advém da aceitação ou não do produto pelos mercados consumidores. A maior parte dos países da Europa prefere o mel floral, enquanto o mercado dos méis de melato é restrito a Europa Central onde são utilizados pela indústria farmacêutica (POURTALLIER; HISCHENHUBER, 1998). Na maior parte do mundo os méis de melato são considerados inferiores, do ponto de vista estético, aos méis florais (MOREIRA; DE MARIA, 2001).

No Estado de Roraima o mel foi classificado como mel de melato porque, segundo a SFA, é originário de nectário extrafloral da espécie *Acacia mangium* e algumas amostras, principalmente as dos meses secos, não se enquadravam na legislação brasileira baseada na Legislação do Mel Britânico. Porém, estudos antigos, já citados, demonstraram as diferenças entre os méis europeus e sul-americanos. Silva (2005), estudando recursos tróficos de abelhas *A. mellifera* em Roraima, concluiu que esta espécie utiliza todos os habitats disponíveis no Estado, como as savanas, a mata ciliar, a vegetação antrópica e aquática, confirmando que dificilmente o mel poderia ser unifloral de *A. mangium*.

A relevância do etnoconhecimento releva a antiga e ainda presente dificuldade na classificação do mel, enquanto a análise das propriedades glicídicas pela comunidade científica pode constituir maior esclarecimento sobre as propriedades genuínas e incomuns dos méis das regiões de savana, provavelmente ainda estaremos distantes de uma legislação que comtemple tantas variedades de habitats utilizados na sua produção.

1.1 MÉTODOS UTILIZADOS PARA CLASSIFICAÇÃO DE AMOSTRAS DE MÉIS

O Regulamento Técnico de Identidade e Qualidade de Produtos Apícolas do Ministério da Agricultura define mel como "produto alimentício produzido pelas abelhas melíferas, a partir do néctar das flores ou das secreções procedentes das partes vivas das plantas ou de excreções de insetos sugadores de plantas, que as abelhas recolhem, transformam, combinam com substâncias específicas próprias, armazenam e deixam maturar nos favos da colméia" (BRASIL, 2000). A definição proposta é idêntica ao do Regulamento do Mel Britânico:

Substância doce natural produzida pela abelha melífera a partir do néctar das plantas ou de excreções de insetos sugadores de plantas sobre as partes vivas de plantas que as abelhas coletam, transformam pela combinação com substancias específicas próprias delas mesmas, depositam, desidratam, armazenam e deixam amadurecer em favos de mel (WILSON, 2005, p.189).

O Regulamento Brasileiro classifica os méis em dois tipos definindo mel floral como produto alimentício produzido pelas abelhas melíferas a partir do néctar de flores, e mel de melato, como produto oriundo das secreções provenientes das partes vivas das plantas (nectários extraflorais) ou de excreções de insetos, sugadores de plantas, transformadas pelas abelhas (BRASIL, 2000). Utiliza também parâmetros físico-químicos, de componentes majoritários para realizar a diferenciação.

Os parâmetros físico-químicos, utilizados pelo Regulamento citado, para diferenciar mel floral de mel de melato são: açúcares redutores, sacarose, minerais e sólidos insolúveis. O mel floral seria constituído por mais de 65% de açúcares redutores, enquanto, estaria diminuído nos méis de melato, com menos de 60% de açúcar redutor. Ao contrário, a sacarose, os minerais e os sólidos insolúveis estariam em maiores quantidades nos méis de melato, em relação ao mel floral.

Outra classificação está relacionada à origem polínica das amostras. Os principais objetivos da análise polínica do mel consistem na determinação da sua origem geográfica e botânica para classificá-lo a partir do pólen, não do néctar. A classificação polínica determina méis como monoflorais, quando apenas uma espécie botânica apresenta frequência relativa (FR)

superior a 45% de pólen (LOUVEAUX; MAURIZIO; VORWOHL, 1978), polifloral, quando duas espécies apresentam pólen na mesma freqüência relativa, e silvestre quando mais de duas espécies possuem freqüências relativas semelhantes. No entanto, existem exceções, como é o caso do mel de *Lavandula stoechas*, que necessita somente de 15% de grãos de pólen para ser considerado monofloral (MAIA; RUSSO-ALMEIDA; PEREIRA, 2005), sendo por isso, consideradas espécies subrepresentadas. Pelo contrário, existem espécies para as quais é necessário uma FR superior a 70% para que seja considerado mel monofloral (LOUVEAUX; MAURIZIO; VORWOHL, 1978).

A rotação ótica também foi utilizada para diferenciar méis florais de méis de melato. Considerando o conceito empírico que os primeiros são levorrotatórios e os últimos dextrorotatórios, Kirkwood, Mitchell; Smith (1960), estabeleceram uma equação baseada em estudos matemáticos com os resultados de pH, cinzas e açúcares redutores obtendo uma função discriminativa X e estabelecendo um valor limite para diferenciação entre estes dois tipos de mel. Foi adotado o valor limite de 73,1, abaixo do qual o mel é classificado como mel de melato. White Jr. (1980) determinou a rotação ótica de 468 amostras de mel e converteu os valores encontrados para a "International Sugar Scale". O valor médio encontrado para as 454 amostras levorrotatórias foi de -14,70°S, com desvio padrão de 4,37°S e CV = 29,77%. Esse autor propôs um limite de - 2°S, ao invés de 0°S, para indicar mel com apreciável teor de melato. Considerando empírico o conceito de que amostras de mel são levorrotatórias e melato dextrorrotatórias e que não existe embasamento real nesta divisão, exceto no fato de que melezitose e erlose, presentes no mel de melato, são fortemente dextrorrotatórias. Algumas amostras analisadas pelo método de Kirkwood e determinadas como mel floral, pelo método de White foram classificadas como mel de melato, assim como o contrário foi observado. Apesar disso, os métodos foram considerados por CAMPOS et al. (2003) como eficientes na diferenciação entre as amostras e equivalentes.

Foldházi (1994), por cromatografia líquida de alta eficiência propôs ainda uma classificação baseada no teor de frutose do mel, criando cinco categorias. Na primeira categoria classificou o mel de acácia com 49g/% de frutose; na segunda categoria classificou a mel de asclépsia, sálvia, castanha doce e méis florais misturados com 45g/% - 46g/%; na terceira os méis de tília, girassol e méis de eucalipto, apresentando 42g/% - 43g/% do dissacarídeo; na quarta o mel de crista de galo com aproximadamente 36g/% e, por último, os méis de melato com 32g/%

do açúcar, na última categoria. No trabalho citado acima, o mel de acácia na Europa é considerado como mel floral e colocado em uma categoria diferente do mel do melato em relação aos teores de açúcares.

Nem uma das classificações descritas diferencia os méis com segurança. O estudo realizado por Marchini (2004), com méis florais de diferentes origens demonstra variação entre 47,3 e 86,0% para o teor de açúcar redutor, 0 a 27,4% para sacarose e 0,01% a 1,2% para minerais, demonstrando a dificuldade de diferenciar mel floral de mel de melato através dos parâmetros utilizados pelo Regulamento Técnico de Identidade e Qualidade de Produtos Apícolas do Ministério da Agricultura.

Campos et al. (2001) analisaram 25 amostras de mel, mel de melato e misturas preparadas com quantidades conhecidas dos dois tipos de mel e classificou as amostras de acordo com a equação de Kirkwood. Três amostras, classificadas como mel floral, tinham teor de açúcar redutor inferior a 60,0% e uma amostra classificada como mel de melato apresentava 67,2% de açúcares redutores. Este trabalho também demonstrou que a misturas de mel floral com até 30,0% de mel de melato elevam os teores de açúcar redutor para 67,9%, o que o classificaria pela Legislação Brasileira como mel floral.

Atualmente tem-se estudado o perfil de oligossacarídeos já que estes compostos nos méis de melato são especialmente complexos (COSTA LEITE et al., 2000). Já no início do século, grandes quantidades de melezitose foram detectadas em mel de melato (MOREIRA; DE MARIA 2001). Weston; Brocklebank (1999) concluiram que a predominância do trissacarídeo melezitose é a principal característica dos méis de melato.

Sanz et al. (2005), analisando polifenóis como outro parâmetro para diferenciação de mel floral e mel de melato, encontraram uma substância chamada quercitol como bom indicador para méis de *Quercus* sp., ainda necessitando de maior amostragem e correlação com dados físico-químicos.

Trabalho realizado por Pezente (2006), compilando dados de analises físico-químicas dos méis de Roraima concluiu que, para o parâmetro minerais, 100% das amostras estavam em conformidade com a legislação para mel floral, enquanto 54,55% das amostras para o parâmetro açúcar redutor e 72,73% para sacarose também estavam em conformidade à legislação em vigor. Análises realizadas por Farias (2006), nos méis de Roraima, não encontrou amostras em não conformidade com o regulamento em vigor para mel de flores. Para o teor de minerais, 100% das

amostras apresentaram menos de 1,2% na sua composição. Apesar de o autor não ter quantificado os teores de açúcar redutor, sacarose e sólidos insolúveis, o resultado demonstra que o mel analisado é pobre em minerais, característica de mel de flores.

Segundo Anklam e Radovic (2001), em estudo realizado comparando métodos de análises de mel para determinação de origem botânica, a análise do perfil de oligossacarídeos por cromatografia gasosa, juntamente com a análise multivariada, possuem grande potencial de diferenciação do mel a partir de várias amostras florais. Estes autores admitem ainda não haver métodos que tragam resultados inequívocos, reforçando a necessidade da melhor caracterização dos méis de Roraima.

Vegetações isoladas e específicas, como as de Roraima, possuem identidade ecológica e florística própria (BARBOSA; MIRANDA, 2005). A escassez de conhecimentos mais profundos sobre a composição físico-química dos néctares das espécies arbóreas, utilizadas pelas abelhas para produção do mel, dificulta o entendimento sobre os padrões dos produtos naturais produzidos.

Parece consenso em meio aos pesquisadores a enorme variação observada entre as amostras de mel, sempre relacionando a origem, primeiro com o bioma visitado pelas abelhas e depois com a espécie produtora e a qualidade do processamento do produto. White Jr. (1978) escreveu que a composição e as características do mel, como sabor, aroma, coloração, densidade e propensão à cristalização, variam de acordo com a flora local, pois estão relacionadas aos componentes presentes no néctar das diversas flores, assim como à proporção em que estão presentes.

Anklam (1998), concluiu que as diferenças nas concentrações dos compostos minoritários presentes no mel devem-se, principalmente, à origem do mel, ou seja, variam com a origem botânica, região e variações climáticas. Silva (2005) comenta que as características dos méis dependem de sua origem, sendo influenciadas pelas condições climáticas e pela matéria-prima utilizada pelas abelhas. Essa dependência se reflete na cor, no sabor, no odor, na viscosidade e nas características físico-químicas dos méis, cuja diversidade é tão ampla quanto às condições em que o mesmo é elaborado.

Azeredo et al. (2003) e Arráez-Román et al. (2006) também afirmam que a composição do mel é variável e depende do néctar, do clima, das condições ambientais e sazonais, bem como do manuseamento e do processamento. No Brasil, Teixeira et al. (2003) afirmam que a

composição glicídica, o cheiro e os parâmetros físico-químicos diferem muito entre as regiões e épocas do ano, por causa dos diferentes tipos de florada e de néctar utilizado pelas abelhas, nos diversos biomas e ao longo dos meses. Essa mudança pode ser observada na cor e na composição do mel de uma mesma colméia, em diferentes épocas. Sabe-se que complexos processos estão envolvidos nas atividades secretoras das plantas e que muitas dúvidas ainda perduram quanto à natureza das substâncias secretadas e suas respectivas localizações nos vegetais. Segundo Alcoforado Filho; Gonçalves (2000), a diversidade de floradas do sertão nordestino favorece a produção de méis com características diferentes quanto à sua cor e composição.

Barth (2004) relata que no Brasil méis monoflorais, produzidos por espécie *A. mellifera* e pelas abelhas nativas sem ferrão, as melíponas, podem manter sempre as mesmas características físico-químicas e organolépticas e são muito apreciados para o comércio. Em contraposição, méis de duas ou mais espécies de plantas, chamados de méis poliflorais ou silvestres, podem ser produzidos pelo gênero *Apis* ou abelha nativa com propriedades muito mais variáveis, em relação à espécie de abelha, fatores climáticos e floração. A legislação brasileira não contempla alguns méis do Sudeste e de acordo com o teor de açúcares redutores, outros não poderiam ser considerados méis de mesa (BARTH, 1990), necessitando da compilação de dados de todas as regiões para atualização da legislação.

Sodré (2000), diz que as características físico-químicas e polínicas do mel ainda são pouco conhecidas, principalmente nas regiões tropicais onde existe elevada diversidade de flora apícola associada às taxas elevadas de umidade e temperatura. Finalmente Marchini et al. (2004), concluiram que devido às diferentes condições climáticas, edáficas e florísticas das regiões onde este mel é produzido, tem sido verificada uma grande variação em suas características físico-químicas. A mudança físico-química da matéria-prima é responsável pela variação.

A principal matéria-prima utilizada pelas abelhas para produção de mel é o néctar, mas a quantidade de néctar produzido pelas espécies vegetais é muito pequena e constitui uma dificuldade para estudos (DUTRA; MARIA, 2000, MOREIRA; DE MARIA, 2001). O néctar é uma solução composta, basicamente, por glicose, frutose e sacarose, nas mais variadas concentrações. Pode conter ainda maltose, rafinose, melobiose, aminoácidos, proteínas, ácidos orgânicos, íons minerais, fosfatos, vitaminas, compostos fenólicos, oxidadases e tirosinases (LEITÃO, 2001 apud FAHN, 1979, BAKER; BAKER, 1983, DURKEE, 1983). A composição do néctar pode variar dependendo da posição e do tipo de nectário (ROSHCHINA, 1993), assim

como a concentração de aminoácidos e de açúcares. O néctar tem de 5 a 80% de açúcar e quantidades pequenas de compostos nitrogenados, minerais, ácidos orgânicos, vitaminas lipídeos, pigmentos e substâncias aromáticas. O teor de proteína do mel é normalmente menor que 0,2%. Os açúcares com valor nutritivo para as abelhas são o 2-metilglucosideo, maltose, trelaose e melezitose, enquanto a maioria dos outros não tem sabor doce nem valor nutritivo (WINSTON, 2003).

Os dados sobre oferta de recursos florais são bastante distintos dependendo da espécie estudada. As observações de Wolff (2006), de flores polinizadas, especificamente por abelhas, concluem que a produção diária de néctar varia entre 0,2 e 5,8µl. Sezerino (2010) obteve dados semelhantes para valores de produção diária de néctar no mirtilo, entre 2,90 ± 1,22 µl e 6,81 ± 2,85 µl. Barbosa (2009) observou que as flores de morangueiro secretam diferentes quantidades de néctar dependendo da sua idade, com secreção máxima de 2,2 ± 1,0µl. Faoro (2009) observou que na pereira além das flores em diferentes estádios fenológicos produzirem quantidades diferentes de néctar, esta variação também é genótipo e climático dependente. Na região mais fria, no município de São Joaquim, as flores não chegaram a acumular néctar e neste local o principal atrativo para os polinizadores é o pólen. A macieira também apresentou uma produção de néctar distinta nas diferentes cultivares utilizadas em Bom Retiro, Santa Catarina.

Ademais, em estudo com 889 espécies de plantas foram encontrados três padrões de composição de glicídios para o néctar: (a) néctar com alto teor de sacarose, (b) néctar com quantidades aproximadamente iguais de glicose, frutose e sacarose e (c) néctar com alto teor de glicose e frutose. O néctar com sacarose dominante foi associado a flores de tubos longos nos quais o néctar era protegido (trevos), enquanto as flores abertas continham geralmente apenas glicose e frutose (MOREIRA; DE MARIA, 2001) sugerindo uma relação entre a taxa desses três glicídios e as diferentes espécies de flor. Outra classificação divide os néctares em quatro classes: sacarose dominante, ricos em sacarose, ricos em açúcares redutores e açúcares redutores dominante, dividindo o teor de sacarose pelo de açúcares redutores. O resultado da razão maior que 0,999 foi atribuído a néctares com sacarose dominante, entre 0,5 e 0,999 a néctares ricos em sacarose, entre 0,1 e 0,499 a néctares ricos em monossacarídeos e por último, resultado menor que 0,1 a néctares com monossacarídeos dominantes (BAKER; BAKER, 1983).

Muitas espécies de plantas não secretam néctar ou não produzem pólen em quantidade e facilidade de acesso necessário às abelhas; outras espécies vegetais produzem pólen ou néctar,

mas em quantidade insuficiente para que as colônias produzam mel em excesso para armazenar nos favos; e ainda há plantas que produzem boa quantidade de pólen e néctar, mas encontram-se muito dispersas na área não sendo para as abelhas acumularem mel desta espécie (PEREIRA, 2008). Um exemplo típico dessa situação são as caatingas arbóreas fechadas com poucas espécies arbustivas e herbáceas, cujo florescimento na época chuvosa restringe-se ao topo das copas. Por outro lado, áreas abertas e com poucas árvores podem ser boas produtoras de mel no período das chuvas com o florescimento dos estratos arbustivo e herbáceo (PEREIRA, 2008).

No estudo do pasto apícola de Roraima, Silva (2005) encontrou oito principais tipos de espécies visitadas pelas abelhas africanas: *Mimosa pudica, Eschweilera* sp., *Maximiliana maripa, Cecropia* sp., Poaceae tipo, *Caraipa densifolia, Euterpe* sp. e *Peltogyne purpurea* que juntas são responsáveis por 70% de todas as espécies botânicas visitadas. A característica dos nectários destas espécies é: *M. pudica* não só possui nectário extrafloral como pode ser diferenciada de outras espécies por esta característica (COUTINHO, 2009). Todas as outras, exceto *P. purpúrea*, não apresentam disco nectarífico (SOUZA, 2008), ou seja, a maioria das espécies arbóreas utilizadas pelas abelhas em Roraima tem nectários ausentes ou extraflorais. Desta forma, segundo a legislação brasileira, o mel produzido pelas abelhas melíferas utilizando as espécies arbóreas do pasto apícola do Estado de Roraima, seria classificado como mel de melato mesmo sendo produzido dos nectários da flora nativa e não de acácia. É importante salientar que o gênero *Acacia* compreende mais de 1.350 espécies de distribuição cosmopolita, mas também caracterizado principalmente por espécies com glândulas nos pecíolos ou nectários extraflorais (DU BOCAGE et al., 2008) e outras espécies com nectários ausentes (CHARÃO, 2005).

A Directiva 2001/110/CE do Conselho Europeu de 20 de dezembro de 2001, relativa ao mel (UNIÃO EUROPÉIA, 2002), simplificou e unificou as legislações de mel justificando a necessidade de não criar concorrência desleal e induzir o consumidor ao erro pelas diferenças entre as legislações e a variedade de tipos de mel comercializados. Segundo a Directiva o consumidor se interessa principalmente pela origem geográfica e a transparência demonstrada pelo produtor na produção do mel. De tal modo que desde 2004, mel floral ou de néctar é o mel com no mínimo 60% de açúcar redutor e o mel de melato é o mel com no mínimo 40% de açúcar redutor. A sacarose e os sólidos insolúveis não são mais utilizados para classificação do mel em floral ou extrafloral. A faixa de variação da sacarose foi determinada entre zero e 15%, separando espécies vegetais com maior quantidade do dissacarídeo no néctar utilizado para produção de

mel. Assim, o mesmo mel em diferentes lógicas de organização ou em diferentes legislações é classificado de forma diferente. O mel de acácia classificado na Europa como mel floral no Brasil pode ser classificado como mel de melato. Deste modo, a legislação brasileira precisa rever a lógica de classificação porque exclui regiões inteiras que possuem pasto apícola com predominância de espécies com nectários extraflorais como Roraima.

Portanto, corroborando as conclusões de Crane (1990), é de fundamental importância à caracterização dos méis visando à criação de padrões, segundo fatores florísticos das regiões, até para ser possível estabelecer critérios comparativos. Desta maneira, têm-se a necessidade de reavaliação da legislação vigente, adaptando-a a realidade de cada região do país, talvez aumentando a faixa de variação para alguns parâmetros analisados, aceitando as diferenças na produção de mel, nos diferentes biomas, na América do Sul e em outras regiões do mundo.

1.2 INFLUÊNCIA DOS MICRORGANISMOS NOS AÇÚCARES DO MEL

A microbiota do mel é constituída por microrganismos presentes no estado esporulado, como as bactérias do gênero *Bacillus* e outros ocasionais ou acidentais, como fungos dos gêneros *Penicillium, Mucor* e *Saccharomyces*, os quais são incorporados ao mel pelas próprias abelhas durante as operações de coleta, preparo do néctar e pólen, ou de maneira fortuita por manipulações pouco higiênicas, durante as etapas de coleta e processamento do mel (SNOWDON, 1999). As leveduras osmofílicas são microrganismos capazes de se desenvolver em ambientes de alta pressão osmótica e, principalmente, toleram altas concentrações de açúcar. No mel *Saccharomyces, Schizosaccharomyces lentus* e *Torula* são predominantes (MIGDAL et al., 2000), mas há ainda espécie com capacidade de crescer a baixas temperaturas, como *Zygosaccharomyces lentus* (STEELS et al., 1999). Fisiologicamente bolores e leveduras adaptam-se a sobrecargas mais severas que a maioria dos microrganismos, podendo crescer em substratos com concentrações de açúcares intoleráveis para as bactérias, já que não são tão sensíveis as pressões osmóticas. Podem também tolerar e crescer em concentrações altas de ácidos, suportando variações de pH entre 2 e 9, embora o pH ótimo para a maioria das espécies esteja situado em torno de 5,6 (LACAZ-RUIZ, 2000).

Uma atividade metabólica peculiar de leveduras osmofílicas é crescerem em alimentos que contêm alguns glicídios simples como uma fonte de carbono onde a frutose é preferencialmente assimilada; essa propriedade é denominada de frutofilia (TILBURY, 1980), uma vez que esse tipo de levedura cresce em méis com umidade acima de 20% e, também, em regiões de clima favorável (temperaturas anuais altas), foi sugerido que esses microrganismos foram responsáveis pela diminuição da razão entre frutose e glicose (F/G) nos méis da Paraíba (COSTA LEITE et al., 1999).

As reações primárias que ocorrem na remoção de monossacarídeos por leveduras são a glicólise anaeróbica em que o carboidrato é convertido em etanol e CO₂. Um dos produtos finais da glicólise anaeróbica de hidratos de carbono é o ácido pirúvico, que é descarboxilado de CO₂ e acetaldeído. As leveduras podem ser usadas para remover os monossacarídeos, dissacarídeos e trissacarídeos encontrados como subprodutos em síntese enzimática de carboidratos. Os monossacarídeos comuns: D-glucose, D-frutose e os dissacarídeos, maltose e sacarose são completamente removidos por *S. cerevisiae*. A sacarose é hidrolisada pela invertase de levedura para D-glucose e D-frutose, que também é então, fermentada. Ao contrário o L-glicose, os dissacarídios celobiose e lactose, o trissacarídio melezitose e todos os tetrasacarídios não são hidrolisados aos seus monossacarídeos por fermentação. Na medida em que os carboidratos tornam-se maiores do que um dissacarídeo, a taxa de hidrólise pela levedura diminui (YONN; MUKERJEA; ROBYT, 2003).

A presença de leveduras osmofílicas e as reações não enzimáticas também poderiam contribuir para modificações na composição de glicídios. Algumas preparações enzimáticas isoladas de fungos têm mostrado atividade de *trans*-D-glicosilação e *trans*-D-frutosilação para formação dos oligossacarídeos. A reação de *trans*-D-frutosilação foi observada em frações enzimáticas isoladas de fungos que foram capazes de sintetizar trissacarídeos, como a panose a partir da maltose e a 1-cestose a partir da sacarose (MOREIRA; DE MARIA, 2001). A presença de leveduras, portanto, altera a composição de mono, di, tri e tetrasacarídeos nas amostras de mel, extremamente importantes para o estabelecimento de uma série de características dos mesmos.

Os teores de frutose e glicose constituem a maior fração na composição do mel e também são importantes para caracterização do produto (MOREIRA; DE MARIA, 2001). A característica de cristalização foi atribuída aos teores mais altos de glicose e mais baixos de frutose (F/G) na composição das amostras por Gleiter, Horn e Isengard (2006) que estudaram a influência da

atividade de água e dos tipos de mel na cristalização, atestando a relação desta característica, mais aos altos teores de glicose do que a atividade de água.

A glicose é o monossacarídeo responsável pela cristalização do mel. O maior problema resultante dessa precipitação da glicose é o aumento do teor de umidade da fase líquida permitindo o desenvolvimento de microrganismos em condições desfavoráveis, como baixa atividade de água e alta concentração de glicídios. Estes microrganismos, as leveduras osmofílicas, ocorrem naturalmente no mel e podem se multiplicar e provocar a fermentação do produto (MOREIRA; DE MARIA, 2001). Porém, Siddiqui (1970), sugeriu que o fator verdadeiramente envolvido com a cristalização seria a presença de microrganismos causadores da cristalização.

Cavia et al. (2002) estudaram a variação dos teores de glicose e frutose em amostras de mel em relação ao armazenamento, cristalização, pH e umidade por um ano. A investigação demonstrou a predominante formação de monossacarídeos a partir da hidrólise de açúcares superiores, ou seja, foi observado aumento nos teores de frutose e glicose na maioria das amostras após armazenamento. Também demonstrou não haver relação significativa entre a umidade, o pH, a origem botânica e a variação de frutose e glicose das amostras. Em estudos anteriores, Donner (1977) e Jimenez et al. (1994) demonstraram resultados diferentes, onde o armazenamento diminuiu os teores de monossacarídeos abaixo de seu original e sugeriram que o pH ácido do mel poderia promover a reversão dos monossacarídeos e formação de dissacarídeos e trissacarídeos. A diferença entre os resultados pode estar na presença ou ausência de leveduras responsáveis pela conversão de monossacarídeos em di e trissacarídeos.

Trabalho realizado por Ruiz-Matute et al. (2007), na tentativa de determinar indicadores de adulterações em mel, foi utilizado como método, o tratamento das amostras com leveduras na tentativa de aumentar a porção dissacarídica, tornando maior a possibilidade de detectar fraude por substâncias dissacarídicas no produto. Neste trabalho, as frações sacarídicas foram determinadas por cromatografia gasosa antes e após o tratamento por leveduras. Os resultados demonstraram que as amostras submetidas ao tratamento com leveduras, após 72h a 30°C, diminuíram sua porção monossacarídica e aumentaram os teores de di e trissacarídeos, sendo os melhores resultados alcançados após 52h da inoculação das leveduras nas amostras de mel.

Portanto, a quantificação do número de leveduras no mel confrontadas com os teores de mono, di e trissacarídeos nas amostras e com as características de cristalização dos méis, podem

ajudar a explicar a composição de açúcares nos méis analisados e as características dos méis produzidas no Estado de Roraima.

Devido ao interesse pela apicultura como atividade econômica para o Estado de Roraima e a escassez de informações sobre a composição glicídica dos méis que ocorre nas regiões do cerrado, pesquisas nesta área faz-se necessárias para possibilitar estratégias futuras de conquista de novos mercados através do melhor conhecimento dos méis da região.

Assim, a caracterização de méis produzidos em determinadas condições, definem a sua identidade no mercado, estabelecendo as características peculiares inerentes à sua origem, possibilitando sua padronização, como também, fornecendo informações para garantir o controle de qualidade do produto, detectando eventuais alterações.

2 OBJETIVO

Caracterização glicídica e microbiológica dos méis de *Apis mellifera* produzidos no Estado de Roraima, através da quantificação dos açúcares por Cromatografia de Alta Eficiência (CLAE) e de bolores e leveduras.

2.1 OBJETIVOS ESPECÍFICOS

Determinar os principais açúcares em amostras de méis de *Apis mellifera* produzidas em Roraima por Cromatografia de Alta Eficiência (CLAE).

Quantificar o número de bolores e leveduras nas amostras de méis de *Apis mellifera* em Roraima.

Verificar se existe uma relação entre os açúcares e o número de bolores e leveduras das amostras.

3 MATERIAIS E MÉTODOS

3.1 AMOSTRAGEM

As amostras de méis produzidas por *A. mellifera* foram colhidas no período entre outubro de 2008 e novembro de 2009, e adquiridas de dois produtores selecionados por não fornecerem alimentação artificial às abelhas, com apiários nos principais municípios produtores de mel. Foram coletadas 29 amostras de mel de três municípios de Roraima: Cantá, Mucajaí e Boa Vista de acordo com a tabela 1, em 7 diferentes fitofisionomias do Estado. Os sete pontos de coleta: ponto 1: 2°35'14,20''N e 60°40'54,16''W; ponto 2: 2°55'16,31N'' e 60°42'16,74''W; ponto 3: 2°47'01,26''N e 60°42'06,54''W, ponto 4: 2°35'33,70''N e 60°49'34,30''W, ponto 5: 2°36'10,88''N e 60°51'14,66''W, ponto 6: 2°28'42,80''N e 60°55'58,40''W e ponto 7: 2°35'30,96''N e 60°53'''W estão representados na figura 1.

3.2 CARACTERIZAÇÃO DAS ÁREAS

Segundo Barbosa e Miranda (2005), em Roraima as áreas de savana se apresentam formando um grande mosaico, comumente chamado de lavrado, com características ecológicas e florísticas específicas, mais pobres em vegetações arbóreas que distinguem estas savanas daquelas de outras regiões brasileiras. Dentre as formações vegetais de savanas em Roraima, mais utilizadas para produção de mel estão áreas de características originais próximas a áreas degradadas de pasto, fruticultura e/ou cultivos agrícolas e com fácil acesso na maior parte do ano.

As sete fitofisionomias de onde foram coletadas as amostras de mel analisadas, são mata galeria, borda de mata galeria com savana alterada, mata galeria antropizada com cultivos arbóreos, mosaico de savana parque com campo sujo, ilha de mata com campo sujo, floresta de contato alterada com pasto degradado e áreas de cultivo de acácia, conforme tabela 1. É importante ressaltar que as áreas onde as amostras analisadas foram coletadas estavam localizadas a mais de dois quilômetros dos grandes cultivos de acácia (SOUZA, 2011), com exceção das amostras 3, 8, 9, 12, 14 e 17, propositalmente colhidas nestas regiões.

A metodologia de coleta para as amostras de mel foi realizada segundo protocolo de coleta de mel para avaliação de resíduos do Ministério da Agricultura e Abastecimento (BRASIL, 1999) e mantidas sob refrigeração até o momento da análise.

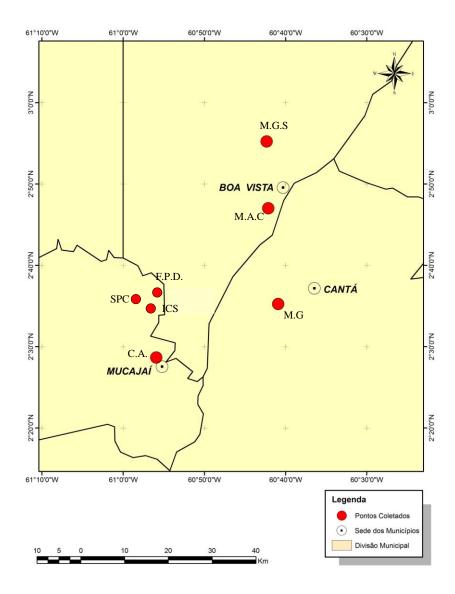


Figura 1: Mapa georeferenciado dos pontos de coleta onde se encontraram os apiários, nos quais as amostras de méis produzidos por A*pis mellifera* foram coletadas para análise.

Tabela 1: Data de coleta, tipo de mel, município e fitofisionomias de onde as amostras de méis produzidos por A*pis mellifera* foram coletadas para análise.

Amostra	Data da coleta	Local de coleta	Fitofisionomia
1	04/10/2008	Município do Cantá – mel silvestre	M.G.
2	?/11/2008	Mucajaí - Tamandaré – mel silvestre	FPD
3	20/11/2008	Mucajaí – Serra Grande – mel de acácia	C.A.
4	08/11/2008	Município do Cantá – mel silvestre	M.G.
5	16/12/2008	Mucajaí - Tamandaré – mel misto de acácia com silvestre	ICS
6	18/12/2008	Município do Cantá – mel silvestre	M.G.
7	16/01/2009	Mucajaí - Serra Grande – mel misto de acácia com silvestre	ICS
8	10/02/2009	Mucajaí – Serra Grande - mel de acácia	C.A.
9	16/02/2009	Mucajaí – Serra Grande – mel de acácia	C.A.
10	26/02/2009	Mucajaí - Tamandaré – mel silvestre	FPD
11	05/03/2009	Mucajaí - Tamandaré – mel silvestre	FPD
12	18/03/2009	Mucajaí – Serra Grande –mel de acácia	C.A.
13	05/04/2009	Mucajaí - Tamandaré – mel silvestre	FPD
14	20/04/2009	Mucajaí - Serra Grande -mel de acácia	C.A.
15	09/05/2009	Mucajaí - Tamandaré – mel silvestre	FPD
16	28/05/2009	Mucajaí - Tamandaré – mel silvestre	FPD
17	28/05/2009	Mucajaí – Serra Grande – mel de acácia	C.A.
18	20/08/2009	Berçário - Boa Vista mel silvestre	MAC
19	12/08/2009	Monte Cristo – Boa Vista – mel silvestre	MGS
20	14/08/2009	Mucajaí – Serra Grande – mel silvestre	SPC
21	16/09/2009	Mucajaí – Serra Grande – mel silvestre	SPC
22	19/09/2009	Mucajaí - Tamandaré – mel silvestre	FPD
23	29/09/2009	Fazenda Berçário - Boa Vista - mel silvestre	MAC
24	08/10/2009	Mucajaí - Tamandaré – mel silvestre	FPD
25	12/10/2009	Fazenda Berçário - Boa Vista - mel silvestre	MAC
26	15/10/2009	Mucajaí - Tamandaré – mel silvestre	FPD
27	07/11/2009	Mucajaí - Tamandaré – mel silvestre	FPD
28	09/11/2009	Monte Cristo – Boa Vista – mel silvestre	MGS
29	14/11/2009	Fazenda Berçário - Boa Vista - mel silvestre	MAC

MG- Mata galerias, FPD - Floresta de contato alterada com pasto degradado, C.A. - Cultivo de acácia, ICS - Ilha de mata com campo sujo, MAC - Mata galeria antropizada com cultivos arbóreos, MGS - Borda de mata galeria com savana alterada, SPC - Mosaico de savana parque com campo sujo.

3.3 QUANTIFICAÇÃO DE AÇUCARES

As análises em Cromatografia Liquida de Alta Eficiência (CLAE) foram realizadas na Divisão de Bromatologia e Toxicologia, Serviço de Química Bromatológica, da Fundação Ezequiel Dias em Belo Horizonte, Minas Gerais.

As amostras foram analisadas por CLAE para quantificação de seis açúcares: glicose, frutose, sacarose, maltose, melezitose e erlose. O cromatógrafo líquido de alta eficiência utilizado foi da marca Shimadzu, modelo Class – LC- 10 Avp, equipado com uma bomba de baixa pressão, injetor automático, sistema de desgazeificação por hélio, forno para colunas, detector de índice de refração e computador. A coluna utilizada foi Lichrospher 100 NH2, 125mmX4mm e os padrões: glicose (Sigma) com pureza de 99,5%, frutose (Sigma), pureza de 99%, sacarose (Sigma), pureza de 99,5%, maltose (Sigma), pureza 97,5%, erlose (Sigma), pureza 97,4% e melezitose (Sigma), pureza 99,9%. A temperatura do forno foi de 40°C e o fluxo utilizado foi de 0,1mL/min de eluição isocrática, sem variação de fluxo e concentração da fase móvel. A fase móvel utilizada foi 80% de acetronitrila, 15% de água ultrapura e 5% de metanol, onde ocorreu a melhor separação dos picos dos diferentes açúcares.

O processamento seguiu a metodologia validada pela Divisão de Bromatologia, Toxicologia e Medicamentos, da Fundação Ezequial Dias sobre Determinação de Açúcares em Alimentos por Cromatografia Líquida de Alta Eficiência (CLAE), número QBC-0064 (FUNDAÇÃO EZEQUIEL DIAS, 2008).

3.4 PREPARO DAS AMOSTRAS

Amostras cristalizadas ficaram em banho-maria à temperatura de 37°C para dissolução dos cristais de açúcares e homogeneizados antes da pesagem. Foram pesadas 2,5g de mel em balão de 25ml, adicionado 10ml de água ultrapura, 12,5ml de acetronitrila e completado o volume com água ultrapura. Filtraram-se as amostras em filtro SEP-PAK _{C18} para os vails. As amostras foram injetadas em triplicata. Foram injetadas as amostras e de cada uma delas injetouse uma fortificada, concentrada com o padrão de açúcar (475μl da amostra + 25μl de padrão meleziose e erlose), uma amostra fortificada diluída (50μl da amostra + 25μl de padrão meleziose

e erlose + 339 μl de acetronitrila + 338 de água ultrapura) e uma amostra diluída (50μl da amostra + 350 μl de acetronitrila + 350 μl de água ultrapura). As amostras fortificadas foram injetadas para confirmação dos picos dos açúcares.

3.5 RELAÇÃO ENTRE CONCENTRAÇÃO DE FRUTOSE E CRISTALIZAÇÃO DE AMOSTRAS

Antes da preparação das amostras foi observada a característica de cristalização após armazenamento sob refrigeração. Foram identificadas as amostras cristalizadas para posterior comparação entre os dados de concentração dos monossacarídeos glicose e frutose.

3.6 ANÁLISE DE BOLORES E LEVEDURAS

Foi pesado 25g de cada amostra de mel e adicionada 225 mL de solução salina peptonada a 0,1%, sendo efetuadas as diluições 10⁻¹, 10⁻² e 10⁻³ de acordo com os Métodos Analíticos Oficiais Para Análises Microbiológicas para Controle de Produtos de Origem Animal e Água do Ministério da Agricultura (BRASIL, 2003). A inoculação em placas das diluições selecionadas foi realizada sobre a superfície do ágar batata glicose 2% acidificado a pH 3,5. Com alça de Drigalski foi espalhado o inóculo cuidadosamente por toda a superfície do meio, até sua completa absorção. A distribuição de 1mL foi realizada em triplicata das diluições 10⁻¹, 10⁻² e 10⁻³ em 3 placas. As placas foram incubadas, sem inverter, a 25°C, por 5 a 7 dias, em incubadora de B.O.D. Para contagem foram selecionadas as placas que continham entre 15 e 150 colônias, as placas com contagens superiores foram consideradas com número maior que 150 colônias (>150) de acordo com Brasil, 2003.

4 RESULTADOS E DISCUSSÃO

4.1 RESULTADOS DA VALIDAÇÃO DO MÉTODO

Os resultados da determinação da fase móvel, da confecção da curva e do cálculo dos resultados para validação do método estão descritos a seguir:

4.1.1 DETERMINAÇÃO DA FASE MÓVEL

Para determinação da fase móvel foram testadas seis fases, observando a melhor separação entre os picos: 78% de acetronitrila e 22% de água ultrapura, 80% de acetronitrila e 20% de água ultrapura, 68% de acetronitrila e 32% de água ultrapura, 74% de acetronitrila e 26% de água ultrapura, 80% de acetronitrila, 15% de água ultrapura e 5% de metanol e 78% de acetronitrila, 17% de água ultrapura e 5% de metanol (linha azul da figura 2). A fase móvel, onde ocorreu a melhor separação dos picos dos diferentes açúcares foi a 80% de acetronitrila, 15% de água ultrapura e 5% de metanol (linha verde da figura 2).

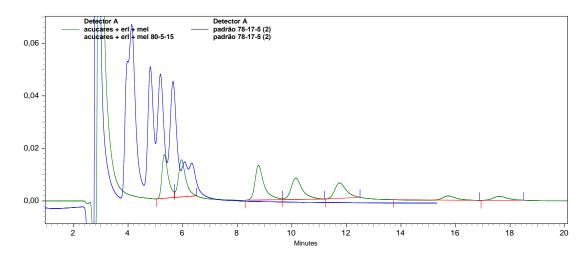


Figura 2: Cromatograma comparativo entre a fase móvel composta de 78% de acetronitrila, 17% de água ultrapura e 5% de metanol e a fase móvel com 80% de acetronitrila, 15% de água ultrapura e 5% de metanol na separação dos açúcares nas amostras de méis analisados.

Os picos correspondem respectivamente a acetronitrila, frutose, glicose, sacarose, maltose, açúcar não determinado, erlose e melezitose.

4.1.2 CONFECÇÃO DA CURVA

Para a confecção da curva os padrões dos açúcares foram injetados separadamente, na intenção de determinar os tempos de retenção nas condições utilizadas, de coluna e fase móvel. Em seguida foi feita a injeção da mistura padrão e introdução dos valores de concentração, para obtenção dos fatores de resposta. O cálculo foi feito comparando-se as áreas dos picos dos padrões e das amostras.

Para a separação dos padrões foi preparada uma solução de aproximadamente 18mg/mL de cada padrão de glicose, frutose, sacarose, maltose. Pesando-se 929,8275mg de sacarose, 954,603mg de glicose, 924,759mg de frutose e 917,67mg de maltose num balão de 50mL, completando o volume com água ultrapura. Para os padrões de erlose e melezitose foi preparada uma solução pesando-se 0,100g dos padrões num balão de 5ml e completando o volume com água ultrapura.

A partir destas soluções foram preparadas novas soluções através de diluição e duas curvas foram construídas para que tanto os açúcares em maiores concentrações quanto os açúcares em menores concentrações pudessem ser quantificados. Na confecção da curva foram injetados no cromatógrafo as diluições a partir da concentração de 0,25mg/mL, ou do ponto 4 (tabela 2), até a concentração de 3,0mg/mL ou ponto 10, para frutose, glicose, sacarose e maltose, açúcares majoritários (figura 3). Para os açúcares presentes em menores concentrações nas amostras, erlose e melezitose, foram injetados no cromatógrafo as diluições a partir da concentração de 0,20mg/mL ou a partir do ponto 4, até a concentração de 0,5mg/mL ou ponto 10 (tabela 3). Após a confecção da curva cada amostra foi injetada em triplicata (figura 4), diluída e fortificada (figura 5 e 6), ou seja, cada amostra foi injetada 6 vezes no equipamento. As amostras diluídas e fortificadas foram injetadas para confirmar os picos dos açúcares.

Tabela 2: Concentrações de açúcares utilizadas para construção da curva dos açúcares glicose, frutose, sacarose e maltose presentes em maiores nas amostras de mel.

Pontos	Concentração	Quantidade do	Massa real	Massa real	Massa real	Massa real
	dos açúcares	pool de	ool de Frutose		Sacarose	Maltose
	(mg/ml)	açúcares (ml)	(mg)	(mg)	(mg)	(mg)
1	0,05	14	51,786502	53,457768	52,07034	51,38952
2	0,1	28	103,573008	106,915536	104,14068	102,77904
3	0,2	56	207,146016	213,831072	208,28136	205,55808
4	0,25	70	258,93252	267,28884	260,3517	256,9476
5	0,5	140	517,86504	534,57768	520,7034	513,8952
6	1,0	280	1035,73008	1069,73304	1041,4068	1027,7904
7	1,5	420	1553,59512	1603,73304	1562,1102	1541,6856
8	2,0	560	2071,46016	2138,31072	2082,8136	2055,5808
9	2,5	700	2589,3252	2672,8884	2603,517	2569,476
10	3,0	840	3107,19024	3207,46608	3124,2204	3083,3712

Tabela 3: Concentrações de açúcares utilizadas para construção da curva dos açúcares erlose e melezitose presentes em menores quantidades nas amostras de mel.

Pontos	Concentração dos	Quantidade do pool	Massa real	Massa real
	açúcares (mg/ml)	de açúcares (ml)	Erlose (mg)	Melezitose (mg)
1	0,05	41	50,875916	53,082864
2	0,10	82	101,751832	106,165728
3	0,15	123	152,62778	159,248592
4	0,20	164	203,503664	212,331456
5	0,25	205	254,37958	265,41432
6	0,30	246	305,255496	318,497184
7	0,35	287	356,131412	371, 580048
8	0,40	328	407,007328	424,662912
9	0,45	369	457,883244	477,745776
10	0,50	410	508,75916	530,828664

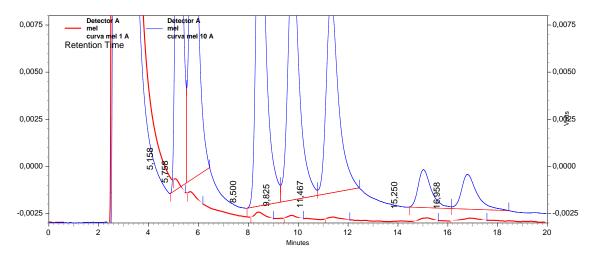


Figura 3: Cromatograma comparativo entre os picos de menor concentração, 0,25mg/mL ou ponto 4, representado pela linha vermelha e o de maior concentração, 3,0mg/mL ou ponto 10, representado pela linha azul, da curva de açúcares.

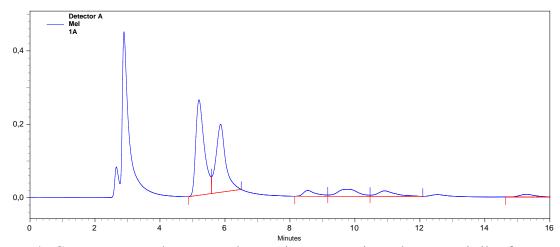


Figura 4: Cromatograma demonstrando os picos respectivos da acetronitrila, frutose, glicose, sacarose, maltose, açúcar não determinado, erlose e melezitose da amostra 1A (APÊNDICE F).

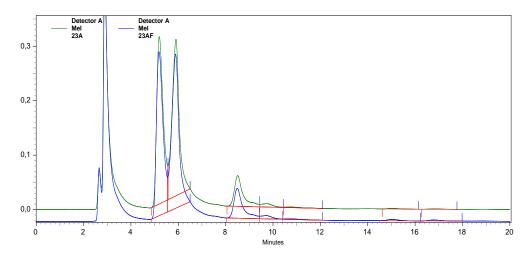


Figura 5: Cromatograma comparativo entre os picos respectivos da acetronitrila, frutose, glicose, sacarose, maltose, açúcar não determinado, erlose, melezitose da amostra 23A, representada pela linha azul e da amostra 23A fortificada, representada pela linha verde.

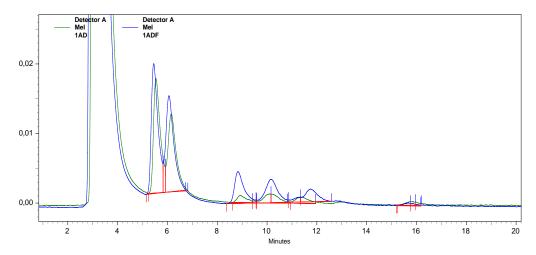


Figura 6: Cromatograma comparativo entre os picos respectivos da acetronitrila, frutose, glicose, sacarose, maltose, açúcar não determinado, erlose, melezitose da amostra 01 diluída, representada pela linha verde, e da amostra 01 diluída e fortificada, representada pela linha azul.

4.1.3 VALIDAÇÃO DO MÉTODO

A curva de linearidade foi construída para cada um dos açúcares testados, a partir das concentrações 0,25 mg/ml até 3,0 mg/ml, utilizadas para confecção da curva, para de cada um

dos açúcares testados, utilizando X para concentração e Y para área do pico. Para a construção da curva de linearidade os padrões nas diferentes concentrações foram injetados em triplicata. A linearidade ou o quadrado do coeficiente de correlação (R²) deve estar o mais próximo possível de 1, para indicar um ajuste linear (HARRIS, 2005).

Após os testes de linearidade (APÊNDICE A), os dados de cada um dos açúcares foram usados no teste para outliers baseado no resíduo Jacknife – Ji (APÊNDICE B) permitindo melhor padronização da curva linear. Quanto menor o número de pontos retirados, fora da linha, melhores foram seus resultados no que diz respeito à robustez do método. Para dezoito pontos e seis concentrações em triplicata utilizados no teste foi possível retirar o máximo de quatro outliners para cada curva do açúcar testado ou 22% dos dados originais.

O Teste de Normalidade dos resíduos foi empregado para avaliar se houve distribuição normal dos resíduos para confirmar a validade dos testes empregados (APÊNDICE C). Também foram realizados: o Teste de Durbin-Watson para autocorrelação dos resíduos (APÊNDICE D) e o Teste de Levene modificado (APÊNDICE E), o primeiro para avaliar se existe distribuição normal entre os resíduos e o segundo para determinar a homogeneidade da variância dos resíduos da regressão.

A Análise de Regressão Linear (Modelo: Y = a + bX), a ANOVA da Regressão, o Teste de Desvio de Linearidade (Falta de Ajuste), a estimativas dos parâmetros, significância e intervalos de confiança, o cálculo da Soma de Quadrado Entre Níveis também foram calculados.

O limite de detecção e quantificação do aparelho para cada um dos açúcares foi realizado a partir do sinal/ruído. Os cálculos do limite de detecção foram realizados pelos testes estatísticos e reinjetados no equipamento na concentração dada para confirmação.

Os resultados foram calculados a partir da área do cromatograma e da diluição utilizada. Os cálculos do cromatógrafo foram validados na planilha do Microsoft Office Excel 2003 (APÊNDICE G).

4.1.4 CÁLCULO DOS RESULTADOS

Os cálculos dos resultados (APÊNDICE G) foram realizados na planilha do Microsoft Office Excel 2003, a partir da reta do gráfico exploratório construído através da curva de

linearidade com X para concentração e Y para área do pico, considerando a massa da amostra pesada, o volume de injeção e a diluição das amostras, para cada amostra em triplicata.

4.2 RESULTADOS DAS ANÁLISES

Os resultados obtidos da cristalização das amostras de mel após refrigeração e a razão entre frutose e glicose são apresentados na tabela 4.

O coeficiente de variação, a média, o mínimo e o máximo encontrados de cada um dos açúcares nas amostras são apresentados na tabela 5.

Os parâmetros estabelecidos pela legislação brasileira, pela legislação do Mercosul e pelo *Codex Alimentarius* para o mel floral são descritos na tabela 6.

Os resultados obtidos das análises dos açúcares e das análises microbiológicas para bolores e leveduras são apresentados como a média das triplicatas e expressos na tabela 8.

4.2.1 TEORES DE AÇÚCARES REDUTORES

A razão média obtida entre os valores de glicose e frutose, nas amostras de mel analisadas foi de 1,0242 (tabela 4). Segundo Moreira e De Maria (2001), razões baixas ou menores que 1 entre frutose e glicose poderiam estar associada a adulterações. Esta razão encontrada nos méis de Roraima confirma a tendência de cristalização observada na maior parte das amostras, o que corrobora o estudo de Gleiter; Horn; Isengard (2006). Apenas cinco amostras (1, 2, 4, 5 e 6) dos méis analisados não cristalizaram durante o tempo de armazenamento, justamente aqueles que obtiveram a razão entre frutose e glicose maiores que 1,2. As amostras que apresentaram as maiores razões, 1,3241 e 1,3232, foram as de números 1 e 4, obtidas no município do Cantá de méis silvestres, enquanto as menores razões, de 0,9213 e 0,9241, foram obtidas das amostras 17 e 16, colhidas no município de Mucajaí de méis de acácia. Este resultado contradiz estudo realizado por Földházi (1994), onde concluiu que os méis de acácia se caracterizavam por maiores médias de frutose do que de glicose. Moreira e De Maria (2001) confirmam os resultados de Földházi (1994) e da literatura para méis de acácia, porém são divergentes dos dados das amostras analisadas dos méis de Roraima.

Em relação aos teores de frutose e glicose encontrados nas amostras analisadas, a média foi de 34,25% e 33,44%, respectivamente, enquanto para o total de açúcares redutores foi de 67,69%, em conformidade com a legislação brasileira que determina mínimo de 65% em méis de flores (tabela 6). As maiores concentrações de açúcares redutores, 78,74% e 75,85%, estão nas amostras 23 e 28 coletadas de méis silvestres no município de Boa Vista, enquanto as menores concentrações, 57,11% e 58,39% foram obtidas nas amostras 2 e 5 no município de Mucajaí, de mel silvestre e mel misto de acácia com silvestre, respectivamente (tabela 5). Analisando os dados separadamente percebe-se variação de 8,2% entre os teores de açúcares redutores das amostras, entre 57,11% e 78,54%, porém, a legislação brasileira classificaria as amostras 1 e 4 coletados de mata galeria, a amostra 2 de floresta de contato com pasto degradado, as amostras 3, 8 e 9 de acácia, e as amostras 5 e 7 coletadas de ilha de mata com campo sujo como mel de melato e todas as outras como mel floral. Em relação ao mel de acácia metade das amostras estudadas seriam classificadas como mel floral enquanto as outras seriam classificadas como mel de melato.

Tabela 4: Característica de cristalização observada nas amostras após armazenamento sob refrigeração e o resultado da razão entre frutose e glicose de cada uma das amostras analisadas.

N° da Amostra	Cristalização	Razão entre Frutose e Glicose
1	Não Cristalizada	1,3241
2	Não Cristalizada	1,2293
3	Cristalizada	0,9453
4	Não Cristalizada	1,3232
5	Não Cristalizada	1,2437
6	Não Cristalizada	1,2484
7	Cristalizada	0,9871
8	Cristalizada	0,9489
9	Cristalizada	0,9417
10	Cristalizada	0,9581
11	Cristalizada	0,9731
12	Cristalizada	1,0367
13	Cristalizada	0,9463
14	Cristalizada	1,0874
15	Cristalizada	0,9465
16	Cristalizada	0,9241
17	Cristalizada	0,9213
18	Cristalizada	1,0478
19	Cristalizada	1,0271
20	Cristalizada	1,0366
21	Cristalizada	1,0363
22	Cristalizada	1,0304
23	Cristalizada	1,0309
24	Cristalizada	1,0824
25	Cristalizada	0,9556
26	Cristalizada	0,9531
27	Cristalizada	0,9603
28	Cristalizada	0,9467
29	Cristalizada	0,9366
Média F/G		1,0242

Tabela 5: Resultados médios, valores mínimos, valores máximos e coeficientes de variação dos açúcares encontrados nas amostras de méis de Roraima.

Parâmetro	n	Média	Mínimo	Máximo	Coeficiente de
rarameno	11	Media	MIIIIIIIO	Maxiiio	variação (%)
Frutose	29	34,25	29,98	39,87	7,06
Glicose	29	33,44	25,18	38,96	11,74
Maltose	29	2,70	0,13	15,69	110,01
Sacarose	29	5,76	0,25	13,35	53,46
Erlose	29	0,43	0,09	1,95	118,68
Melezitose	29	0,17	0,03	0,67	79,35
Açúcares redutores	29	67,69	57,11	78,54	8,20

Da mesma forma, as amostras 1, 4 e 6 coletadas da mesma fitofisionomia (mata galeria) seriam classificadas de formas diferentes, a amostra 6 como mel floral e as amostras 1 e 4 como mel de melato, mesma classificação das amostras 5 e 7 coletadas de ilha de mata com campo sujo. Apesar do pasto apícola estudado em Roraima ser formado principalmente por espécies com nectários extra-florais, a maior parte das amostras, demonstra valores de açúcares redutores superiores aos que a legislação diz ser característica de méis originários de nectários florais.

A média encontrada de 67,69% para açúcares redutores está abaixo do encontrado por Silva; Queiroz; Figueredo (2004), Marchini (2004) e Araújo; Silva; Sousa (2006), nas amostras de mel do Piauí, onde a média foi de 77,25%, 78,28% e 72,22% respectivamente, para açúcares redutores, com pequena variação entre as amostras, nos três estudos respectivos e abaixo da média descrita por Arruda et al. (2005) estudando méis da Chapada do Araripe, em Santana do Cariri no Ceará, de 77,94%, com pequena variação entre as amostras. Bendini e Souza (2008), concluiram que os méis de abelhas proveniente da florada do cajueiro, no Ceará, têm altos teores de açúcares totais, uma média de 81,25%, numa variação de 80,8% a 83,5%, maior que a média das amostras analisadas. Ainda sobre os méis de *A. mellifera*, Anacleto; Marchini (2004) encontraram no cerrado paulista média de 73,1% para açúcares redutores e Komatsu; Marchini; Moreti (2002) estudando amostras de méis de laranjeira, de eucalipto e silvestre, do Estado de São Paulo, obtiveram médias respectivas de 74,6%, 72,6% e 72,3%. Em outros países como a

Espanha, Mateo e Bosch-Reig (1997) encontraram na composição de açúcares redutores, médias de 66,9% para méis de flor de laranjeira, 68,4% em méis de lavanda, 74,8% em méis de girassol e 70,4% nos méis de eucalipto. White et al. (1962), em méis americanos, relatou média de 69,47% de açúcares redutores, analisando 504 amostras; no Canadá, os valores médios obtidos foram de 70,9% em méis de alfafa, 76,2% em méis de canola e 70,3% em méis de trevo para o parâmetro (SWALLOW; LOW, 1990).

Porém, a média de 67,69%, encontrada para os teores de açúcares redutores, é compatível com os méis de regiões florísticamente próximas ao Estado de Roraima, revelando identidade entre as amostras em relação às características físico-químicas dos méis. Piccirillo; Rodriguez; Rodriguez (1998) concluiram que os teores de açúcares redutores variaram entre 50,76% a 82,48% e a média encontrada foi de 67,31% nas amostras estudadas da Venezuela, enquanto, Bertoldi et al. (2008), no Mato Grosso do Sul encontraram uma média de 68,2% para o parâmetro açúcar redutor.

A composição de açucares em méis de melato apresentou valores médios de 26,08% para glicose e 31,8% para frutose (WHITE Jr., 1962). Outras quatro determinações de açúcares em méis de melato realizada por Pourtallier (1968), pelo método de cromatografia gasosa, determinaram que os valores de frutose são semelhantes à média encontrada para méis florais, 36,7%, 37%, 36,8% e 37,2%, enquanto os valores de glicose nas quatro determinações se apresentaram são mais baixos, 27,8%, 28%, 27,5%, 28%. Os valores mais baixos de glicose explicam a baixa tendência à cristalização dos méis de melato. A média obtida para o parâmetro açúcar redutor, nas amostras analisadas, é compatível com méis do Estado do Mato Grosso do Sul e com méis da Venezuela. A média de 33,44% de glicose, além da tendência à cristalização é compatível com mel de origem floral.

Valores mais baixos de açúcares redutores são atribuídos aos méis de meliponídeos. Anacleto et al. (2009) estudando méis de meliponídeos, da espécie *Tetragonisca angustula*, no Estado de São Paulo, encontrou para açúcares redutores variação entre 48,66 a 57,97% (valor médio de 55,46%). Os valores médios observados estão próximos aos obtidos por Rodrigues; Marchini; Carvalho (1998) para mel de *T. angustula*, em São Paulo, de 58,19% para açúcares redutores. Apesar dos valores mais baixos encontrados em amostras de méis serem atribuídos aos méis produzidos por meliponídeos, Alves et al. (2005), num estudo com méis de *Melipona mandacaia* no Estado da Bahia, encontraram maiores quantidades de açúcares redutores,

comparados a outros méis de meliponídeos, média de 74,82%. Além disto, algumas amostras (1, 2, 3, 4, 5, 7, 8 e 9) analisadas em Roraima, produzidas por *A. mellifera* também apresentaram baixos teores de açúcares redutores. Alguns méis de meliponídeos comparados às algumas amostras analisadas dos méis de Roraima produzidos por A. *mellifera* podem apresentar ainda menores teores de açúcares redutores confirmando que as características do mel estão relacionadas não só com a espécie produtora.

Tabela 6: Valores estabelecidos pela Legislação Brasileira, Legislação Mercosul e do *Codex Alimentarius* para açúcares redutores e sacarose para mel floral e valores médios obtidos nas amostras de méis em Roraima.

Parâmetro	Legislação Legislação do		Codex	Médios obtidos
	Brasileira	Mercosul	Alimentarius	nas amostras
Açúcares redutores (%)	Mínimo 65	Mínimo 65	Mínimo 60	67,69
Sacarose (%)	Máximo 6	Máximo 6	Máximo 5	5,76

4.2.2 TEOR DE SACAROSE

A média dos valores encontrados nas amostras analisadas para sacarose foi de 5,76% (tabela 5). Os maiores valores encontrados, 13,35% e 10,08%, das amostras 3 e 9, respectivamente, foram colhidas no município de Mucajaí, de méis de acácia enquanto os menores teores de sacarose foram encontrados nas amostras 24 e 6, 0,25% e 0,90%, respectivamente, ambos de méis silvestres, a primeira do Mucajaí e a última do Cantá. A média está de acordo com a legislação brasileira para mel de flores, cuja classificação como mel floral determina teor de sacarose inferior a 6%, mas está em desacordo com o *Codex Alimentarius* onde o máximo permitido é de 5% (tabela 6) nos méis de flores. Analisando os dados separadamente percebe-se variação entre as amostras com valores oscilando entre o mínimo de 0,25% e o máximo de 13,35%, apresentando coeficiente de variação de 53,46% (tabela 5). Médias acima de 3% de sacarose são consideradas elevadas em amostras de mel (MOREIRA; DE MARIA, 2001), porém méis genuínos são produzidas em regiões brasileiras com valores bem mais altos que 3%

como verificamos em Roraima onde valores de 13,35% e 10,08% foram encontrados. A classificação como mel floral no Brasil e internacionalmente como mel extrafloral, de acordo com um único parâmetro, restringe mercado e determina um padrão de qualidade para sacarose que constitui na verdade um elemento de identidade em regiões específicas. Este conhecimento deve ser levado em conta quando existe o comércio de um produto pouco conhecido, onde muitas vezes tentamos atingir o padrão internacional como padrão de qualidade, neste caso, o padrão não se aplica, e a legislação precisa repensar o que constitui identidade e qualidade em mel.

Este estudo revela semelhanças com amostras de méis venezuelanos em relação aos valores de sacarose. Piccirillo; Rodriguez; Rodriguez (1998) concluiram que o parâmetro com maior variação nas amostras de mel da Venezuela foi a sacarose, com intervalo entre 1,28% a 19,63%, enquanto a média entre as amostras foi de 10,46%, das oito amostras estudadas. Bertoldi et al. (2008), nos méis do Mato Grosso do Sul relataram média de 4,84% e Anacleto e Marchini, (2004), no cerrado paulista, de 4,5%, nas amostras analisadas. A variação, entre 0,2 a 11,4%, no último estudo citado, é semelhante à encontrada em Roraima.

No Piauí, em três diferentes estudos, Silva; Queiroz; Figueredo (2004), Marchini (2004) e Araújo; Silva; Sousa (2006) encontraram mais baixos valores para o quesito sacarose do que os encontrados em Roraima, média de 2,5%, 3,78% e 2,6%, respectivamente, com pequena variação entre as amostras. Arruda et al. (2005) estudando méis da Chapada do Araripe, em Santana do Cariri, no Ceará, obtiveram teor médio de 3,45% de sacarose também com pequena variação entre as amostras. Komatsu; Marchini; Moreti (2002) nas amostras de méis de laranjeira, de eucalipto e silvestre, no Estado de São Paulo, obtiveram médias respectivas de 2,0%, 2,4% e 2,4%, também inferiores aos encontrados nas amostras analisadas do Estado de Roraima.

Nos méis de *M. mandacaia* estudados por Alves et al. (2005), no Estado da Bahia, a média encontrada foi de 2,91% para o parâmetro. Anacleto et al. (2009) encontraram valores ainda mais baixos, 0,95% para méis de meliponídeos, da espécie *Tetragonisca angustula*, no Estado de São Paulo. Os resultados variaram de 0,13 a 1,87% (valor médio de 0,95%), próximos aos obtidos por Rodrigues; Marchini; Carvalho (1998) para mel de *T. angustula*, em São Paulo, 1,17% para sacarose aparente. Os méis de meliponídeos, dos estudos citados acima, comparados os méis de *Apis*, em Roraima, apresentam valores significativamente mais baixos em relação ao parâmetro sacarose. As médias dos teores de sacarose encontradas, por exemplo, no Estado de

São Paulo em amostras produzidas por *Apis* e por meliponídeos são semelhantes confirmando a ausência de correlação apenas com a espécie produtora de mel e os teores de açúcares.

Os méis de melato têm, segundo a legislação brasileira, maiores quantidades de sacarose quando comparados a méis de flores, até 15% (BRASIL, 2000), mas considerando o coeficiente de variação da sacarose obtido, de 53,46% (tabela 5), nas amostras de méis analisados, este parâmetro não diferencia com segurança as amostras de mel floral e mel de melato. Outro estudo como o de Weston e Brocklebank (1998) encontrou valores semelhantes para sacarose, de 16,4% e de 18,4% nos méis de melato. Mateo e Bosch-Reig (1997) estudando amostras uniflorais da Espanha obtiveram médias de sacarose maiores nos méis de flor de laranjeira (4,45%) e nos méis de lavanda (0,82%) do que nos méis de melato (0,21%). Barth et al. (2005), obtiveram resultados semelhantes nos méis de diferentes regiões brasileiras, concluindo que méis de eucalipto, méis de citrus e de *Hovenia dulcis* podem ter valores de sacarose superiores aos de méis de melato, apresentando 3,0%, 8,37% e 1,62%, respectivamente.

Da mesma forma que alguns autores sugeriram o teor de frutose como base para caracterização dos méis de eucalipto do Estado de São Paulo, porque é significativamente diferente dos outros méis brasileiros (MOREIRA; DE MARIA, 2001), a variação do parâmetro sacarose constitui um elemento de identidade dos méis de parte da Amazônia Setentrional, desta forma, a legislação deveria considerar uma maior faixa de variação para o parâmetro.

4.2.3 TEOR DE MALTOSE

Nas amostras analisadas do Estado de Roraima a média encontrada para maltose foi de 2,70% (tabela 5). As menores concentrações, de 0,13% e 0,25% foram encontradas nas amostras de números 18 e 9, respectivamente, do município de Boa Vista, de mel silvestre e do município de Mucajaí, de mel de acácia. As maiores concentrações, 15,69% e 6,12%, foram obtidas nas amostras 24 e 5, ambas do município de Mucajaí, de mel silvestre e misto de acácia com silvestre, respectivamente. A maltose foi o dissacarídeo com maior variação entre as amostras, cujos teores variaram de 15,69% a 0,13%.

Apesar da legislação brasileira não estabelecer padrões para a maltose os resultados são semelhantes a média nacional de 3,05%, encontrada por Costa Leite et al. (2000) estudando 70 amostras de mel de várias regiões brasileiras. O resultado também está de acordo com os

encontrados por Campos et al. (2003), em Santa Catarina, de 2,689% e 2,645% nas amostras classificadas como florais. Os resultados das amostras analisadas diferem das amostras de alguns países, como a Espanha, média de 3,96% (MATEO; BOSCH-REIG, 1997), dos resultados de Swallon; Low (1990), no Canadá, de 1,18% para os méis de alfafa e 0,76% para méis de canola e das amostras dos méis da Argélia, de 1,72% nas amostras de méis poliflorais e 1,67% em méis de eucalipto (OUCHEMOUKH et al., 2009). Diferem também dos méis americanos com média de 7,31%, muito superior a de outros países (DONNER, 1977). Nos méis de melato estudados por Campos et al. (2003) no Brasil, as médias encontradas foram de 1,37% e 3,4%. Os méis de melato da Nova Zelândia apresentaram 2,2% de maltose (ASTWOOD; LEE; MANLEY-HARRIS, 1998), enquanto os da Espanha apresentaram 4,9% (MATEO; BOSCH-REIG, 1997), e dos Estados Unidos 8,80% (DONER, 1977), nos méis da mesma origem.

A maltose pode constituir um elemento importante para caracterização de amostras de méis já que nas amostras 1, 4, 5, 6, 14, 16 e 24 foram verificadas maiores quantidades de maltose do que de sacarose, justamente as amostras onde encontramos baixos valores de sacarose confirmando uma correlação entre os dissacarídeos (tabela 8) em relação à presença no mel.

4.2.4 TEOR DE ERLOSE

O valor médio encontrado para erlose nas amostras de méis analisadas foi de 0,43%, variando entre 0,09% e 1,95% (tabela 5). As menores concentrações, de 0,09% e 0,10%, foram encontradas nas amostras 20 e 11, ambas do município de Mucajaí, de mel silvestre. As maiores concentrações, 1,95% e 1,75%, foram obtidas nas amostras 4 e 1, ambas do município do Cantá, de mel silvestre. A média obtida por Campos (1998), no Brasil, foi de 0,98% em méis de diferentes origens florais, com variação entre valores abaixo do limite detectável e 3,91%, portanto, incompatível com as amostras analisadas, tanto em relação à média quanto a variação.

Os resultados são compatíveis com os valores médios encontrados em méis uniflorais estudados por Mateo e Bosch-Reig (1997) na Espanha, de 0,41% para méis de laranjeira, 0,39% para méis de lavanda e 0,30% nos méis de eucalipto, e com os canadenses encontrados por Swallon e Low (1990), de 0,26%, nos méis de canola. Os mesmos autores encontraram no Canadá, média de 2,86% de erlose nos méis de trevo e 3,43% e nos méis de alfafa demostrando a variação deste trissacarídeo entre as diferentes origens florais.

A erlose é um trissacarídeo, segundo alguns autores, presente nos méis de melato, já que faz parte do metabolismo dos afídeos. Uma das classificações dos méis de melato é baseada em dois tipos: naqueles ricos em melezitose que granulam, e naqueles ricos em erlose, não sujeitos a cristalização (MOREIRA; DE MARIA; 2001). Apesar de a média de erlose encontrada ser mais baixa do que de outras regiões brasileiras, cinco amostras (1, 2, 4, 5 e 6), de meses secos em Roraima (outubro, novembro e dezembro), justamente as que não cristalizaram, apresentaram os mais altos teores de erlose, 1,75%, 0,91%, 1,95%, 1,70%, e 0,97%, respectivamente, o que poderia, pela classificação acima, corresponder a méis de melato inclusive porque a cor predominante nas amostras de méis dos meses mais secos é âmbar escuro (PEZENTE, 2006). Porém, as amostras com altos teores de erlose citadas acima apresentaram teores de glicose mais baixos, de 25,18%, 25,62%, 25,23%, 26,03% e 30,58%, respectivamente, comparadas as demais amostras. Esta observação justifica melhor a formação da erlose a partir da transferência de um grupo carbônico de uma molécula de sacarose para o resíduo de glicose de uma outra molécula de sacarose (MOREIRA; DE MARIA; 2001), do que a formação da erlose a partir do metabolismo dos afídios.

A erlose também foi relacionada com a origem extrafloral do néctar, mas considerando que as espécies botânicas utilizadas pelas abelhas para produção de mel em Roraima, apresentam nectários extraflorais e que a maioria das amostras apresentou teores de erlose menores que a média nacional, este trabalho demonstra não existir ligação entre a presença de erlose e a origem extrafloral dos méis.

4.2.5 TEOR DE MELEZITOSE

O valor médio encontrado para melezitose, nas amostras analisadas, foi de 0,17% (tabela 5). As menores concentrações encontradas, de 0,07% e 0,03%, foram das amostras 16 e 17, respectivamente, ambas do município de Mucajaí, a primeira de mel silvestre e a segunda de mel de acácia. As maiores concentrações foram obtidas nas amostras 1 e 24, de 0,67% e 0,54%, respectivamente, a primeira do município do Cantá, de mel silvestre e a segunda do município de Mucajaí, também de mel silvestre.

Nos méis estudados por Costa Leite et al. (2000), de vários estados brasileiros, o valor médio encontrado foi de 0,36% na região Sudeste, 0,37% na região sul, 0,21% no nordeste e

0,33% no centro-oeste, ou seja, os valores de melezitose nas amostras de Roraima são os mais baixos encontrados no país.

Os dados de melezitose nos méis analisados não são compatíveis com os de países como a Espanha, onde méis de diferentes origens apresentavam valores abaixo do limite de detecção descritos por Mateo e Bosch-Reig (1997). No Canadá os valores descritos por Swallon e Low (1990) foram de 0,038 nos méis de alfafa, 0,047% nos méis de trevo e 0,041% nos méis de canola, médias mais baixas que as encontradas em Roraima.

Weston e Brocklebank (1999) encontraram valores de 4,3% de melezitose estudando amostras de mel de melato. Barth et al. (2005) encontraram na única amostra estudada, identificada como mel de melato, o valor de 6,56% para este trissacarídeo, porém Campos (1998) não encontrou valores de melezitose nas amostras de mel de melato de Santa Catarina, porque apresentavam valores muito baixos, abaixo do limite de detecção do equipamento.

Altos teores de melezitose em méis é considerada como resultado da contaminação com excreções de afídios, utilizadas pelas abelhas como matéria-prima para produção de mel, ou seja, a presença desse açúcar em grande quantidade classificaria a amostra com mel de melato (MOREIRA; DE MARIA, 2000). Analisando apenas o parâmetro melezitose, os baixos teores do açúcar obtidos nas amostras de Roraima, o mel produzido no Estado não poderia ser classificado como mel de melato mesmo sendo de origem extrafloral.

4.3 ANÁLISES MICROBIOLÓGICAS

Apesar do Regulamento de Identidade e Qualidade para Produtos Apícolas (BRASIL, 2000) não comtemplar as características microbiológicas aceitáveis para o produto, os bolores e as leveduras podem interferir na qualidade, nas características glicídicas e diminuir a vida de prateleira dos méis (SOUZA et al., 2009). Os únicos valores de referência para esta característica qualitativa no Brasil foram estabelecidos pela RDC nº 12, da ANVISA (BRASIL, 2001).

Das 29 amostras analisadas apenas 12 apresentaram número de bolores e leveduras acima do padrão da legislação em vigor, de 10UFC.g⁻¹ (BRASIL, 2001), ou 41,38% da amostragem (tabela 8). Pode-se observar que os valores para contagens de bolores e leveduras encontrados,

entre 0 e >1,5x10², foram menores do que aqueles verificados por Sereia (2005) em méis orgânicos, de 5,3x10²UFC.g⁻¹ e maiores do que o resultado obtido em méis industriais de 1,0x10²UFC.g⁻¹. A faixa de variação encontrada por Sodré (2005) estava entre 1,0x10¹ UFC.g⁻¹ e 1,7x10⁴UFC.g⁻¹ nos méis do Ceará e entre 1,0x10¹ UFC.g⁻¹ e 3,0x10² UFC.g⁻¹ nos méis do Piauí. Garcia-Cruz et al. (1999) encontraram variação entre 0,5x10¹ UFC.g⁻¹ e 1,4x10² UFC.g⁻¹, onde 55% das amostras apresentavam contagens maiores que 10UFC.g⁻¹ enquanto Alves et al. (2009) encontraram resultados entre <10¹ UFC.g⁻¹ e 3,8x 10¹UFC.g⁻¹. Todos os estudos citados contradizem o constatado por Bruijn e Sommeijer (1997) que consideraram ocasional a presença de bolores e leveduras nas amostras de mel coletadas em diferentes países tropicais.

Duas amostras não apresentaram crescimento de bolores e leveduras em placas, a amostra 2, do município de Mucajaí e a 25 do município de Boa Vista, ambos os méis silvestres, a primeira de novembro de 2008 e a última de outubro de 2009. As menores contagens foram encontradas nas amostras 19 e 20, colhidas no município de Boa Vista e da Serra Grande, de origem silvestre.

Para alguns autores, a presença de leveduras em méis com razão entre frutose e glicose menor que 1 sugeriu amostras adulteradas com açúcar comercial queimado ou do crescimento de leveduras osmofílicas (MOREIRA; DE MARIA, 2001). Por outro lado, adulterações de méis são comumente feitas com xarope de milho rico em frutose (RUIZ-MATUTE et al., 2007) o que aumentaria a razão entre frutose e glicose. Além disto, esse tipo de levedura cresce em méis com umidade acima de 20%, em regiões de clima favorável com temperaturas anuais altas (COSTA et al.,1999).

A presença de microrganismos nas amostras de méis alteram o perfil dos açúcares encontrados variando com o tempo de contato com amostras (armazenamento), a quantidade inicial na colheita e os açúcares presentes nos néctares coletados pelas abelhas melíferas para fabricação do mel (MOREIRA; DE MARIA, 2001). As análises estatísticas ajudaram a determinar o comportamento dos elementos das amostras em relação aos microrganismos analisados.

4.4 ANÁLISES ESTATÍSTICAS

As análises estatísticas realizadas foram as correlações de Pearson, Análise de Componentes Principais (ACP) e Análises de Agrupamentos porque possuem grande potencial de diferenciação de amostras de méis (ANKLAM; RADOVIC, 2001). Todas as operações matemáticas e estatísticas foram realizadas com auxílio dos programas XLSTAT 2011.1.01 e Excel 2007.

As correlações de Pearson estão demonstradas na tabela 7. Observa-se correlações significativas a 1% entre a razão F/G e maltose, entre a razão F/G e erlose e entre a razão F/G e a cristalização, enquanto observou-se a 5% correlação significativa entre a razão frutose e glicose e sacarose. Entre a frutose e a glicose e entre a frutose e sacarose também foram observadas correlações significativas a 1%, assim como, entre a glicose e a erlose, a glicose e a cristalização e entre a sacarose e a maltose. Outra correlação significativa encontrada com a sacarose foi com a erlose, a 5% de significância. A maltose apresentou correlação significativa a 1% com a melezitose e a erlose a correlação significativa a 1% com a açúcares redutores e cristalização. A correlação negativa entre a razão glicose e frutose e os dissacarídeos indicam a formação dos primeiros a partir da sacarose ou da maltose enquanto a correlação entre estes dois últimos indicam preferência na formação de sacarose a de maltose e/ou a formação de erlose a partir da sacarose faria os teores diminuírem mais rapidamente que os de maltose. A correlação positiva entre maltose e melezitose indica a formação conjunta, ou seja, a melezitose não é formada a partir da maltose.

A correlação significativa positiva entre a frutose e a glicose nas amostras analisadas aliada à correlação negativa entre a frutose e a sacarose indicam que a origem do néctar utilizado pelas abelhas para sua produção, é de nectários ricos em sacarose. A quebra da molécula de sacarose resultaria em duas moléculas de monossacarídeos, em uma glicose e uma frutose. A diminuição maior do teor de glicose ao de frutose das amostras pode ser explicada porque a glicose é mais rapidamente assimilada pela enzima α-D-glicose oxidase oriunda da própria invertase da saliva das abelhas ou pela preferência dos microrganismos pela glicose (MOREIRA; DE MARIA, 2001). A correlação significativa entre a glicose e a erlose também ajuda a compreender a diminuição mais rápida da glicose já que a formação da erlose se deve a biotransformação deste açúcar.

O mel como uma matriz complexa não responde bem apenas a correlações univariadas, principalmente porque as leveduras tem influência na biotransformação de todos os elementos da matriz em proporções diferentes visto que os açúcares são fonte de alimento para os microrganismos analisados. Desta forma, a ACP foi aplicada para verificar quais elementos da matriz poderiam explicar grande parte da variançia total das amostras.

Tabela 7: Resultado das Correlações de Pearson para as variáveis das amostras de méis estudadas.

		RAZÃO							AÇÚCAR	
VARIÁVEIS	Levedura	F/G	FRUT %	GLIC%	SAC %	MALT%	ERL%	MEL%	REDUTOR	CRIST.
LEVEDURAS	1									
RAZÃO F/G	-0,378	1								
FRUTOSE %	-0,163	0,068	1							
GLICOSE %	0,221	-0,815**	0,514	1						
SACAROSE %	0,252	-0,399*	-0,536	0,005	1					
MALTOSE %	-0,319	0,498**	0,253	-0,281	-0,603**	1				
ERLOSE %	-0,324	0,880**	-0,167	-0,817**	-0,302*	0,428	1			
MELEZITOSE %	-0,155	0,316	0,031	-0,247	-0,161	0,570**	0,305	1		
AÇÚCAR REDUTOR	0,084	-0,544**	0,798**	0,928**	-0,230	-0,087	-0,647**	-0,160	1	
CRISTALIZAÇÃO	-0,3285	0,9124**	-0,0952	-0,8177**	-0,3636	0,4048	0,9228**	0,186	0,6196**	1

^{** 1%} de significância pelo teste t.

^{* 5%} de significância pelo teste t.

A ACP é um método de ordenação e consiste em uma auto-análise da matriz de covariância das medidas originais. Promove uma rotação dos dados em um espaço multidimensional, onde o primeiro eixo representa o das maiores variâncias e, o segundo, a maior quantidade de variação no conjunto de dados (BARBOSA, 2009). Sendo os elementos das amostras individualmente responsáveis pela variância dos dados a ACP foi utilizada para explorar a similaridade entre as amostras estudadas, definindo-as em grupos, considerando simultaneamente todas as variáveis (LACERDA et al., 2010).

A Tabela 8 apresenta os valores médios das triplicatas das características físico-químicas e microbiológicas: frutose (FRU), glicose (GLI), sacarose (SAC), maltose (MAL), erlose (ERL), melezitose (MEL), açucares redutores (AR), cristalização (CRIST) e bolores e leveduras (LEV) nas amostras estudadas utilizada para os cálculos estatisticos. Foi atribuído 0 (zero) as amostras não cristalizadas e 1 (um) as amostras cristalizadas após refrigeração.

Na tabela 9 estão representados os valores das nove componentes em relação à influência da variação dos elementos das amostras. Quanto maior o número de componentes para explicar a variação mais complexa é a matriz. A primeira componente explica melhor a variação da glicose (21,51%), enquanto a segunda componente explicou melhor a variação da frutose (30,44%), a terceira componente da melezitose (60,622%) e a quatro concentrou maior peso nas contagens de bolores e leveduras (75,099%). A variação das amostras em relação as contagens de bolores e leveduras, por exemplo, pode ser explicada pelas quatro primeiras componentes porque somam 98,739% da variação. A maior parte da variação de melezitose e sacarose, 74,993% e 41,286%, respectivamente, também podem ser explicadas pelas quatro primeiras componentes. Os monossacarídios frutose e glicose e a razão entre eles foram os elementos das amostras que precisaram de maior número de componentes para explicar suas variações. As quatro primeiras componentes só explicaram 27,589%, 29,808%, 36,366% da variação de glicose, da razão entre frutose e glicose e frutose, respectivamente.

A figura 7 apresenta a influência das variáveis estudadas sobre as amostras de méis. O primeiro componente concentrou 43,69% e o segundo 28,01% acumulando 71,70% na variância total. Em uma análise de componentes principais, se os dois primeiros componentes acumularem uma porcentagem relativamente alta da variação total, em geral acima de 70% eles explicam satisfatoriamente a variabilidade manifestada nas amostras avaliadas (SODRÉ et al., 2007).

Tabela 8: Resultado da cristalização e dos valores médios das triplicatas das características físicoquímicas, microbiológicas cristalização das amostras de méis de Roraima.

Amostra	FRU %	GLI %	SAC %	MAL %	ERL %	MEL %	AR %	CRIST	LEV (NMP)
1	33,34	25,18	2,53	5,43	1,75	0,67	58,52	0	10
2	31,49	25,62	5,11	4,19	0,91	0,10	57,11	0	0
3	30,04	31,78	13,35	1,00	0,29	0,19	61,83	1	>150
4	33,38	25,23	3,81	5,95	1,95	0,12	58,61	0	8
5	32,37	26,03	4,40	6,12	1,70	0,11	58,39	0	4
6	38,18	30,58	0,90	4,79	0,97	0,11	68,76	0	5
7	30,76	31,17	7,76	1,83	0,47	0,21	61,93	1	5
8	30,73	32,39	8,81	1,38	0,33	0,20	63,12	1	>150
9	29,98	31,84	10,08	0,25	0,10	0,19	61,82	1	>150
10	34,48	35,99	5,91	2,62	0,34	0,09	70,48	1	7
11	34,52	35,48	7,91	0,60	0,10	0,10	70,00	1	>150
12	33,78	32,58	9,36	0,46	0,17	0,13	66,36	1	12
13	36,33	38,39	4,10	1,63	0,17	0,12	74,73	1	>150
14	37,09	34,10	1,09	3,27	0,23	0,09	71,19	1	>150
15	34,87	36,84	5,26	2,04	0,27	0,19	71,71	1	>150
16	35,33	38,23	0,79	2,93	0,15	0,07	73,56	1	3
17	32,49	35,27	4,07	1,74	0,19	0,03	67,76	1	>150
18	34,05	32,50	5,97	0,13	0,18	0,12	66,55	1	6
19	34,70	33,78	7,15	1,07	0,09	0,09	68,48	1	1
20	34,15	32,94	6,95	1,25	0,16	0,10	67,09	1	1
21	36,42	35,15	4,63	1,39	0,20	0,12	71,57	1	>150
22	35,05	34,02	7,63	1,72	0,27	0,14	69,07	1	>150
23	39,87	38,67	8,45	1,81	0,24	0,19	78,54	1	5
24	37,33	34,49	0,25	15,69	0,26	0,54	71,82	1	2
25	33,59	35,15	6,35	1,58	0,20	0,11	68,74	1	0
26	32,90	34,51	7,31	1,61	0,28	0,12	67,41	1	12
27	35,46	36,92	7,14	2,18	0,25	0,28	72,38	1	10
28	36,89	38,96	2,32	2,27	0,19	0,13	75,85	1	2
29	33,61	35,89	7,57	1,51	0,16	0,23	69,50	1	3
Média	34,25	33,44	5,76	2,70	0,43	0,17	67,69	0,17	55,03
LD	0,0236	0,0188	0,0204	1,7701	0,0630	0,0310	-	-	-
LQ	0,0344	0,0280	0,0633	5,1821	0.1291	0,0367	-	-	-

FR: frurose, GL: glicose, SAC: sacarose, MAL: maltose, ERL: erlose, MEL: melezitose, AR: açúcar redutor e razão entre sacarose e açúcares redutores.

Tabela 9: Tabela de contribuição das componentes em relação a variação das amostras de méis na Análise de Componentes Principais.

	F1	F2	F3	F4	F5	F6	F7	F8	F9
LEVEDURA	4,147	4,865	13,737	75,099	1,476	0,651	0,023	0,003	0,000
RAZÃO F/G	20,715	1,506	4,779	2,808	13,628	2,090	9,725	44,750	0,000
FRUTOSE %	1,890	30,440	3,050	0,986	24,030	4,654	1,741	22,009	11,200
GLICOSE %	21,510	4,832	0,614	0,633	0,229	1,158	12,806	28,710	29,509
SACAROSE %	2,067	24,670	2,361	12,188	22,770	32,071	3,773	0,099	0,000
MALTOSE %	8,144	14,759	12,027	0,027	20,303	42,196	2,475	0,069	0,000
ERLOSE %	21,327	0,021	2,765	2,468	4,313	2,995	64,848	1,262	0,000
MELEZITOSE %	5,293	3,302	60,622	5,776	10,006	14,151	0,837	0,012	0,000
AR	14,908	15,605	0,044	0,016	3,246	0,034	3,772	3,085	59,291

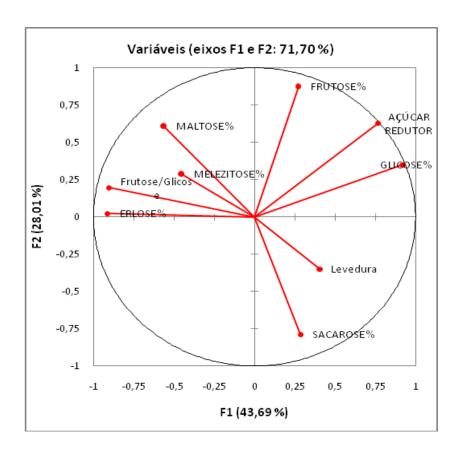


Figura 7: Influência das variáveis sobre as amostras de méis estudadas.

Na figura 7 percebe-se no primeiro quadrante a relação direta entre maltose e melezitose e entre maltose e razão F/G porque o ângulo formado entre estes elementos é menor que 30°. Está

representado também a relação inversa entre a maltose e leveduras (quadrantes opostos) e a relação direta entre leveduras e sacarose no quarto quadrante. No terceiro quadrante temos as relações diretas entre frutose e açúcar redutor e açúcar redutor e glicose. Foi confirmada que os elementos com maiores contribuições para o agrupamento das amostras são a sacarose e a leveduras, ou seja, a variância dos elementos das amostras está ligada primeiro a variação da sacarose e depois as contagens de leveduras.

A figura 8 apresenta o comportamento das amostras quanto a similaridade em relação as variáveis e a fitofisionomia de onde foram coletadas. Na figura 8 observa-se as amostras coletadas de ilhas de mata com campo sujo (ICS) unidas em um único quadrante, já as amostras coletadas nas mata galerias (MG) e as amostras das áreas de cultivo de acácia (CA) ficaram próximas e concentradas em dois quadrantes, assim como, as amostras de mata galeria antropizada com cultivos arbóreos (MAC), de borda de mata galeria com savana alterada (MGS) e de mosaico de savana parque com campo sujo (SPC). As amostras de fitofisiomias com maior dispersão foram as de floresta de contato alterada com pasto degradado (FPD) encontradas nos quatro quadrantes. As amostras da mesma fitofisionomia com exceção das coletadas em floresta de contato alterada com pasto degradado (FPD) demonstram proximidade e variação da maior parte delas em relação a alguns açúcares. A figura 8 evidencia a maior concentração de amostras no quadrante ocupado pela sacarose e pelas contagens de leveduras indicando que a variação ocorre principalmente pela variação destes elementos da matriz.

Para complementar a classificação da ACP foi realizada análise de agrupamentos para reunir em aglomerados os dados da matriz relacionados entre si, suas relações de similaridade e separar tais grupos segundo suas distâncias (ou dissimilaridades). A figura 9 apresenta o dendrograma das variáveis. As variáveis mais similares se agruparam primeiro: os açúcares redutores com a glicose e a frutose, depois a sacarose e as contagens de bolores e leveduras, a maltose e a melezitose e por último a erlose e a razão frutose e glicose formando quatro grupos. Quanto maior o afastamento do ponto 1.0 no dendrograma menor é a influencia das variáveis na matriz. A aglomeração das contagens de leveduras e a sacarose possuem a maior uma similaridade para o agrupamento das amostras acima, de 53% indicada pela linha tracejada do dendograma.

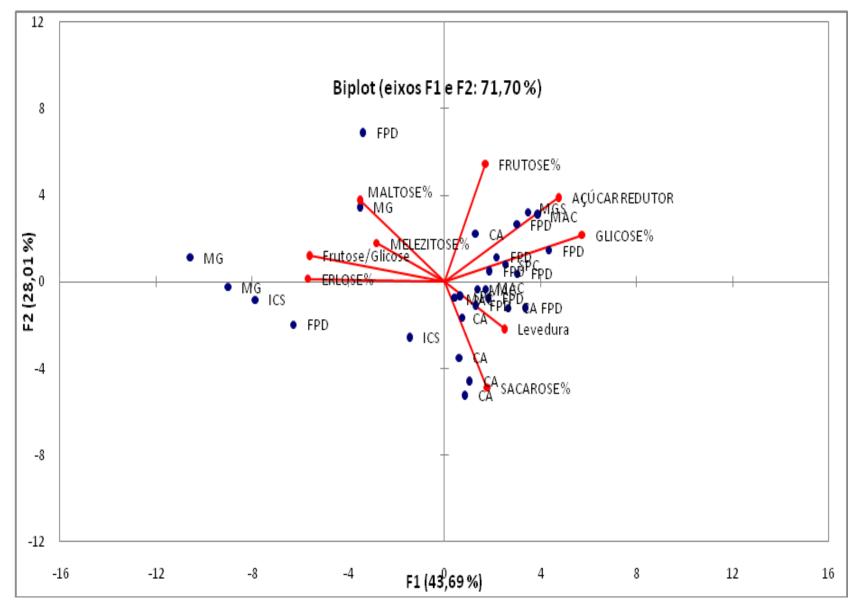


Figura 8: Comportamento das amostras quanto a similaridade em relação as variáveis.

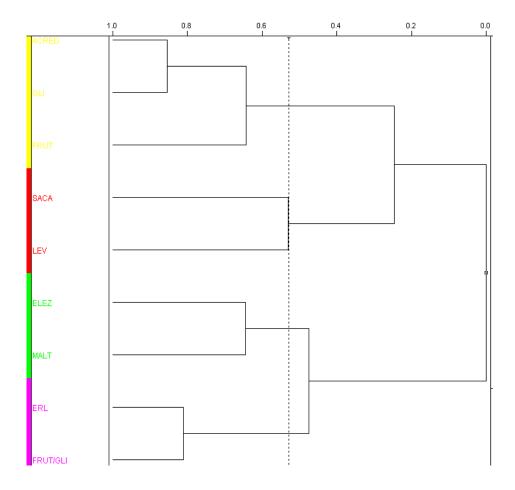


Figura 9: Dendrograma das variáveis físico-químicas e microbiológicas das amostras de méis estudadas.

Resultados ainda mais conclusivos poderiam ser obtidos com análises polínicas, análises de pH e umidade. Outros trabalhos precisam ser realizados sobre as relações entre os diferentes açúcares, e sobre como os microrganismos atuam na modificação dos elementos da matriz do mel. Porém, esta dissertação confirma que existem elementos com maior influência na variação de amostras de mel, como a sacarose e leveduras em Roraima, indicando a necessidade de estudar parâmetros de identidade das regiões, importantes na caracterização dos méis para legislação e para o mercado consumidor.

5 CONCLUSÃO

A maioria das amostras analisadas dos méis de Roraima apresentaram característica de mel floral conforme os teores de açúcares redutores.

O principal açúcar encontrado nas amostras de méis de Roraima foi a frutose, seguido da glicose, sacarose, maltose, erlose e melezitose.

Os teores médios de açucares redutores encontrados para frutose e para glicose, são compatíveis com méis de flores.

Os méis de Roraima têm alta tendência à cristalização.

Expressiva quantidade de amostras apresentaram teores de sacarose aos permitidos pela legislação brasileira para mel de flores.

Os méis de Roraima apresentaram grande variação entre os parâmetros estudados, característica de méis poliflorais.

A erlose demonstrou maior correlação com a glicose do que com a origem extrafloral do néctar.

As amostras apresentaram contagens de bolores e leveduras acima do limite estabelecido pela legislação em vigor de 10UFC.g⁻¹ em 41,38% ou 12 amostras dos méis analisados.

Foi confirmada através da Análise de Componentes Principais (ACP) e da Análise de Agrupamenos a maior contribuição da sacarose e das leveduras na variância dos elementos das amostras.

A sacarose constitui elemento de identidade dos méis de Roraima.

O néctar utilizado pelas abelhas para produção de mel em Roraima é provavelmente de nectários com altos teores de sacarose.

Uma nova classificação poderia ser criada para incluir os méis das savanas com suas propriedades diferenciadas.

REFERÊNCIAS

ALCOFORADO FILHO, F. G.; GONÇALVES, I. C. Flora apícola e mel orgânico. In: VILELA, S. L. O. Cadeia produtiva do mel no Estado do Piauí. Teresina: Embrapa Meio-Norte, 2000, p. 48-59.

ALVES, E. M.; TOLEDO, V.A. A.; MARCHINI, L. C.; SEREIA, M. J.; MORETI, A.C.C.C.; LORENZETTI E. R.; NEVES C. A.; SANTOS A.A. Avaliação da presença de coliformes, bolores e leveduras em amostras de mel orgânico de abelhas africanizadas das ilhas do alto rio Paraná. **Ciência Rural**, Santa Maria, v.39, n.7, p.2222-2224, out., 2009.

ALVES, R. M. O.; CARVALHO, C. A. L.; SOUZA, B. A.; SODRÉ, G. S.; MARCHINI, L. C. Características físico-químicas de amostras de mel de Melípona mandacaia SMITH (HYMENOPTERA: APIDAE). Ciência e Tecnologia de Alimentos, Campinas, v.5, n.24, p.644-650, out./dez., 2005.

ANACLETO, D. A.; MARCHINI, L. C. Composição físico-química de amostra de méis de Apis mellifera L. provenientes do cerrado paulista. **Revista da Industria Animal**, Nova Odessa, v.61, p. 161-172, dez., 2004.

ANACLETO, D. A.; SOUZA, B. A.; MARCHINI, L. C.; MORETI, A. C. C. C. Composição de amostras de mel de abelha Jataí (*Tetragonisca angustula* latreille, 1811). **Ciência e Tecnologia de Alimentos**, Campinas, v.29, n.3, p. 535-541, jul./set, 2009.

ANKLAM, E. A Review of the analytical methods to determine the geographical and botanical origin of honey. **Food Chemical**, v.63, n.4, p.549-562, 1998.

ANKLAM, E.; RADOVIC, B. Suitable analytical methods for determining the origin of European honey. **American Laboratory**. p. 60–64, maio, 2001.

ARAÚJO, D. R.; SILVA, R. H. D.; SOUSA, J. S. Avaliação da qualidade físico-químico do mel comercializado na cidade do Crato, CE. **Revista de Biologia e Ciências da Terra**, João Pessoa, v.6, n.1, p.51-55, jul./dez., 2006.

ARRÁEZ-ROMÁN, D.; GÓMEZCARAVACA, A. M.; GÓMEZ-ROMERO, M.; SEGURA-CARRATERO, A.; FERNÁNDEZ-GUTIÉRREZ, A. Identification of phenolic compounds in rosemary honey using solid-phase extraction by capillary electrophoresis—electrospray ionization-mass spectrometry. **Journal of Pharmaceutical and Biomedical Analysis**, v.41, n.5, p. 1648-1656, ago., 2006.

ARRUDA, C. M. F.; MARCHINI, L. C; MORETI, A. C. C. C.; OTSUK, I. P.; SODRÉ, G. S. Características físico-quimicas de méis da Chapada do Araripe/Santana do Cariri-Ceará. **Acta Scientiarum: Animal Sciences,** Maringá, n.1, v.27, p.171-176, jan./mar., 2005.

ASTWOOD, K.; LEE, B.; MANLEY-HARRIS, M. Oligosaccharides in New Zealand Honeydew Honey. **Journal Agricultural Food Chemistry**, v. 46, n. 12, p. 4958-4962, jan., 1998.

AZEREDO, L.C., AZEREDO, M.A.A., SOUZA, S.R., DUTRA, V.M.L. Protein contents and physicochemical properties in honey samples of *Apis mellifera* of different floral origins. **Food Chemistry**, v. 80, n. 2, p. 249-254, fev., 2003.

BAKER H.G.; BAKER, I. **The Biology of Nectaries**. New York: Columbia University Press, 1983.

BARBOSA, J. F. Ecologia da polinização de *Fragaria x ananassa* Duchesne cv 'Aromas' (Rosaceae) em sistemas de produção orgânico e convencional, sob proteção de túneis baixos, em Rancho Queimado, SC, Brasil. Florianópolis, 2009. 72f. Dissertação (Mestrado em Recursos Genéticos Vegetais) – Faculdade de Agronomia, Universidade Federal de Santa Catarina.

BARBOSA, R.I. Fitoecologia de Roraima. 2ªed. Boa Vista: PRONAT, 2009.

BARBOSA, R.I.; MIRANDA, I.S. Fitofisionomias e Diversidade Vegetal das Savanas de Roraima. In: BARBOSA, R.I.; XAUD, H. A. M.; SOUZA, J. M. C. Savanas de Roraima –

Etnoecologia, Biodiversidade e Potencialidades Agrosilvipastoris. Boa Vista: FEMACT, 2005. p. 61-78.

BARTH, O. M. Melissopalinologia no Brasil: Uma revisão sobre análises palinológicas de mel, própolis e bolotas de pólen de abelhas. **Scientia Agricola**. Piracicaba, v.61, n.3, p.342-350, maiojun., 2004.

BARTH, O. M. Pollen in monofloral honey from Brasil. **Journal of Research**, v.29, n.2, p.89-94, jan./jul., 1990.

BARTH, O. M.; MAIORINO, C.; BENATTI, A. P. T.; BASTOS D. H. M. Determinação de parâmetros físico-químicos e da origem botânica de méis indicados monoflorais no sudeste do Brasil. **Ciência e Tecnologia de Alimentos**, v. 25, n. 2, p. 229-233, abr./jun., 2005.

BENDINI, J. N.; SOUZA, D. C. Caracterização físico-quimica do mel de abelhas provenientes da florada do cajueiro. **Ciência Rural**, Santa Maria, v.38, n.2, p.565-567, mar./abr., 2008.

BERTOLDI, F. C.; REIS, V.D.A.; GONZAGA, L.V.; CONGRO, C.R. Caracterização físico-química e sensorial de amostras de mel de abelhas africanizadas (**Apis mellifera** L.) produzidas no Pantanal. **Evidência** (**Videira**), v. 7, p. 63-74, nov., 2008.

BRANDÃO, A. F. Diálogos da grandeza do Brasil. Salvador: Progresso, 1956.

BRASIL. Agência Nacional de Vigilância Sanitária. **Resolução RDC n.12, de 02 de janeiro de 2001**. Regulamento técnico sobre padrões microbiológicos para alimentos. Disponínel em: http://www.anvisa.gov.br/e-legis. Acesso em: 03 jan.2010.

BRASIL. Ministério da Agricultura e Abastecimento. **Programa Nacional de Controle Biológico.** Instrução Normativa, n.3, de 22 de janeiro de 1999.

BRASIL. Ministério da Agricultura e Abastecimento. **Regulamento Técnico de Identidade e Qualidade do Mel e Produtos Apícolas.** Instrução Normativa, n.11, de 20 de outubro de 2000. Disponível em: http://extranet.agricultura.gov.br/sislegis-consulta/consultarLegislacao.do? operação =visualizar&id=7797>. Acesso em: 03 jan.2010.

BRASIL. Ministério da Agricultura e do Abastecimento. **Métodos de Análise Microbiológica** para Alimentos. Instrução Normativa n. 62, de 26 de agosto de 2003. Brasília: 2003. 76p.

BRASIL. Ministério da Agricultura. LANARA. **Métodos Analíticos Oficiais para Controle de Produtos de Origem Animal e seus Ingredientes. II – Métodos físicos e Químicos.** Brasília: 1981.122p.

BRUIJN, L.L.M.; SOMMEIJER, M.J. The composition of honeys of stingless bees (Melípona). In: SOMMEIJER M.J. BEETSMA, J.; BOOT W.J.; ROBERTS E.J.; DE VRIES R. **Perspective** for honey production in the tropics. NECTAR, 1997, p. 146-168.

CAMPOS, G. **Melato no mel e sua determinação através de diferentes metodologias**. Belo Horizonte, 1998. 178f. Tese (Doutorado em Alimentos) - Escola de Veterinária, Universidade Federal de Minas Gerais.

CAMPOS, G.; DELLA-MODESTA, R. C.; SILVA, T. J. P.; BAPTISTA, K. E.; GOMIDES, M. F.; GODOY, R. L. Classificação do Mel em Floral ou Mel de Melato. **Ciência e Tecnologia de Alimentos**, Campinas, v.1, n. 23, p. 1-5, jan./abr., 2003.

CAMPOS, G.; DELLAMODESTA, R.C.; SILVA, T. J. P; RASLAN, D. S. Variação de alguns parâmetros do mel de melato em relação ao mel floral. **Revista do Instituto Adolfo Lutz**, São Paulo, v.61, n.1, p. 59-64, jul., 2001.

CAVIA, M. M.; FERNÁNDEZ-MUIÑO, M. A.; GOMEZ-ALONSO, E.; MONTES-PÉREZ, M. J.; HUIDOBRO, J. F.; SANCHO, M. T. Evolution of fructose and glucose in honey over one year: influence of induced granulation. **Food Chemistry**, v.78, n. 2, p. 157-161, ago., 2002.

CHARÃO L. S. POLINIZAÇÃO EM *Acacia mearnsii* De Wild. **Revista de Ciências Agro-Ambientais**, v.3, p.92-109, 2005.

COSTA LEITE, J. M.; TRUGO, L. C.; COSTA, L. S. M.; QUINTEIRO, L. M. C.; BARTH, O. M.; RIBEIRO, M.; DE MARIA, C.A.B. Determination of oligosaccharides in Brazilian honeys of different botanical origin. **Food Chemistry**, v.70, n.1, p. 93-98, jul., 2000.

COSTA LEITE, J. M.; TRUGO, L. C.; COSTA, L. S. M.; QUINTEIRO, L. M. C.; BARTH, O. M.; RIBEIRO, M.; DE MARIA, C.A.B. Determination of non-volatile compounds of different botanical origin Brazilian honeys. **Food Chemistry**, v.65, n.3, p. 347-352, maio, 1999.

COSTA, S. C. C. Dinâmica Populacional de *Protium pallidum* Cuatrec. (Breu branco) em uma floresta tropical de terra firme explorada seletivamente no Estado do Pará, Brasil. Belém, 2006. 67p. Dissertação (Mestrado em Botânica) — Universidade Federal Rural da Amazônia.

COUTINHO A. P. S. Revisão taxonômica e estudos filogenéticos de Mimosa L. sect. Colothamnus Barneby (Leguminosae – Mimosoideae). São Paulo, 2009. 49f. Tese (Doutorado em Ciências) - Instituto de Biociência, Universidade de São Paulo.

CRANE, E. Bees and beekeeping: science, pratices and world resources. Oxford: Heinemann Newnes, 1990.

DONNER, L. M. The sugars of honey - a review. **Journal Science and Food Agriculture**, v.28, n.5, p.443-456, maio, 1977.

DU BOCAGE, A. L.; SOUZA M. A. A., MIOTTO S. T. S.; V. GONÇALVES-ESTEVES. Palinotaxonomia de espécies de Acácia (leguminosae-mimosoideae) no semi-árido brasileiro. **Rodriguésia**, v.59, n. 3, p. 587-596, 2008.

DUTRA, V. M. L.; MARIA, C. A. B. Determination of oligosaccharides in Brazilian honeys of different botanical origin. **Food Chemistry**, v. 70, n.1, p. 93-98, jul., 2000.

FAORO, I. D. **Biologia reprodutiva da pereira japonesa** (*Pyrus pyrifolia* var. *Culta*) sob o efeito do genótipo e do ambiente. Florianópolis, 2009. 196f. Tese (Doutorado em Recursos Genéticos Vegetais) – Faculdade de Agronomia, Universidade Federal de Santa Catarina.

FARIAS, L. R. Caracterização físico-química de méis de abelhas produzidos em cinco municípios do Estado de Roraima. Boa Vista, 2006. 38f. Monografia (Graduação em Química) - Universidade Federal de Roraima.

FÖLDHÁZI, G. Analysis and quantitation of sugars in honey of different botanical origin using high performance liquid chromatography. **Acta Alimentaria**, v. 23, n.3, p. 299–311, 1994.

FUNDAÇÃO EZEQUIEL DIAS. Divisão de Bromatologia e Toxicologia. Procedimento Operacional Padrão para Determinação de Açúcares em Alimentos por Cromatografia Líquida de Alta Eficiência (CLAE): QBC-0064. Belo Horizonte, 2008. p.1-10.

GARCIA-CRUZ C.H.; HOFFMANN F.L.; SAKANAKA L.S.; VINTURIN T.M. Qualidade do mel. **Alimentos e Nutrição**, v.10, p. 23-35, 1999.

GLEITER R. A.; HORN H.; ISENGARD H. D. Influence of type and state of crystallization on the water activity of honey. **Food Chemistry**, v. 96, n.3, p. 441-445, jun., 2006.

HARRIS D. Análise Química Quantitativa. Rio de Janeiro: Livros Técnicos e Científicos, 2005.

HARRIS, M. Vacas, Porcos, Guerras e Bruxas: Os enigmas da cultura. Rio de Janeiro: Civilização Brasileira, 1978.

HUE, S. M. **Delícias do Descobrimento**. Rio de Janeiro: Zahar, 2008.

IHERING, H. V. As abelhas sociaes indígenas do Brasil. **Lavoura, Boletim da Sociedade Nacional Agricultura Brasileira**, v.6, n.43, p. 39-67, 1948.

JARA, F. La miel y el aguijon. Taxonomia e zoológica y etnobiologia como elementos em lãs nociones do gênero entre los Andke (Amazônia Colombiana). **Journal de la Societé dês Americanistes,** n. 82, p. 209-258, 1996.

JIMENEZ, M.; MATEO, J. J.; HUERTA, T.; MATEO, R. Influence of the storage conditions on some physicochemical and mycological parameters of honey. **Journal of the Science of Food and Agriculture**, v.64, n.1, p.67–74, jan., 1994.

KIRKWOOD, K. C., MITCHELL, T. J., SMITH, D. Examination of the occurrence of honeydew in honey. **Analyst**, v. 85, n. 1056, p. 412-416, 1960.

KOMATSU, S. S.; MARCHINI, L. C.; MORETI, A. C. C. C. Análises físico-químicas de méis de flores silvestres, de eucalipto e de laranjeira, produzidos por *Apis mellifera* L. 1758 (Hymenoptera, Apidae) no Estado de São Paulo. 2. Conteúdo de açúcares e de proteína. **Ciência e Tecnologia de Alimentos**, Campinas, v.2, n. 22, p.143-146, maio/ago., 2002.

LACAZ-RUIZ, R. Manual Prático de Microbiologia básica. São Paulo: EDUSP, 2000.

LACERDA J. J. J; SANTOS J. S.; SANTOS S. A.; RODRIGUES G. B.; SANTOS M. L. P. Influência das características físico-químicas e composição elementar nas cores de méis produzidos por Apismellifera no sudoeste da Bahia utilizando análise multivariada. **Química Nova**, v. 33, n.5, p.1022-1026, 2010.

LEITÃO C. A. S. Caracterização estrutural dos nectários de Triumfetta semitriloba Jacq. (Tiliaceae). Viçosa, 2001. 81f. Disseratação (Mestrado em Botânica), Universidade Federal de Viçosa.

LÉVI-STRAUSS, C. Do mel às cinzas. São Paulo: Cosac Naify, 2004.

LÉVI-STRAUSS, C. O pensamento selvagem. São Paulo: Nacional, 1970.

LOUVEAUX, J.; MAURIZIO, A.; VORWOHL, G. Methods of melissopalynology. **Bee World,** v.4, n. 59, p.139-157, 1978.

MAIA M.; RUSSO-ALMEIDA P. A.; PEREIRA J. O. Caracterização do Espectro Polínico dos Méis do Alentejo (Portugal). **Silva Lusitana**, v.13, n.1, p. 95-103, 2005.

MARCHINI, L. C. **Mel Brasileiro: Composição e Normas**. Ribeirão Preto: São Francisco, 2004.

MARCHINI, L. C.; SODRÉ, G. S.; MORETI, A. C. C. C.; OTSUK, I. P. Composição físico-química de amostra de méis de *Apis mellifera* L. do Estado de Tocantins, Brasil. **Revista da Industria Animal**, Nova Odessa, v.61, n.2, p.101-114, 2004.

MARQUES-SOUZA, A. C.; KERR, W. E. Mel Amargo de Breu (Protium sp., Burseraceae). **Acta Amazônica**, v.33, n.2, p.339-340, 2003.

MATEO, R.; BOSCH-REIG, F. Sugar profiles of Spanish unifloral honeys. **Food Chemistry**, v. 60, n.1, p. 33-41, 1997.

MIGDAL, W.; OWCZARCZYK, H. B.; KEDZIA, B.; HOLDERNA-KEDZIA, E.; MADAJCZYK, D. Microbiological descontamination of natural honey by irradiation. **Radiation Physics and Chemistry**, Oxford, v.57, n.3/6, p. 285-288, 2000.

MOREIRA, R. F. A.; DE MARIA, C. A. B. Glicídios no mel. **Química Nova**, v. 24, n.4, p.516-525, 2001.

OLIVEIRA, M. L. As abelhas sem ferrão na vida dos seringueiros e dos kawinawá do Alto Rio Juruá, Acre, Brasil. In: CUNHA M. C. **A Enciclopédia da floresta**, São Paulo: Companhia das Letras, 2002, p. 615-627.

OLIVEIRA, M.L.; CUNHA, J. A. Abelhas africanizadas Apis mellifera scutellata Lepeletier, 1836 (Hymenoptera: Apidae: Apinae) exploram recursos na floresta amazônica? **Acta Amazônica**, v. 35, n. 3, p. 384-394, 2005.

OUCHEMOUKH, S.; SCHWEITZER, P.; BACHIR, BEY M.; DJOUDAD-KADJI H.; LOUAILECHE H. HPLC sugar profiles of Algerian honeys. **Food Chemistry**, 13 dez. 2009. Disponível em https://www.elsevier.com/locate/foodchem. htm>. Acesso em: 18 fev. 2010.

PEREIRA, D. S. Estudo do Potencial de Produção de Néctar da jitirana branca (*Merremia aegyptia*) em Área de Preservação da Caatinga em Quixeramobim - CE. Mossoró, 2008. 75p. Dissertação (Mestrado em Ciência Animal) - Universidade Federal Rural do Semi-Árido.

PEZENTE, L. G. Características físico-químicas, microscópicas e de cor dos méis de *Apis mellifera* L., 1758 (HYMENOPTERA: APIDAE), produzidos no Estado de Roraima. Boa Vista, 2006. 16f. Monografia (Especialização em Ciência e Tecnologia de Alimentos) - Universidade Federal de Roraima.

PICCIRILLO, G. A.; RODRÍGUEZ, B.; RODRIGUEZ, G. O. Estúdio de algunos parâmetros fisicoquímicos em mieles cosechadas durante la época seca de ocho zonas apícolas del Estado Zulia, Venezuela. **Revista da Faculdade de Agronomia Luiz de Queiroz**, v.15, p.486-497, 1998.

POURTALLIER, J.; HISCHENHUBER H. Uber die benutzung der gaschromatographie für die bestimmung der zucker in honig. **Zeitschrift Bienenforschung**, v.9, n.2, p. 217-221, 1998.

RODRIGUES, A. C. L.; MARCHINI, L. C.; CARVALHO, C. A. L. Análises de mel de *Apis mellifera* L. 1758 e *Tetragosnisga angustula* (Latreille, 1811) coletado em Piracicaba-SP. **Revista da Agricultura**, v.73, n.3, p.255-262, 1998.

RODRIGUES, A. S. Etnoconhecimento sobre abelhas sem ferrão: saberes e práticas dos índios guarani. Piracicaba, 2005. 236p. Dissertação (Mestrado em Ecologia de Agoecossistemas) – Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo.

RODRIGUES, E. R.; SOUZA, L. O.; CAVALCANTE, D. S.; da COSTA, A. J. S. Uso do mel de abelha dos moradores do Bairro do Laguinho, Macapá-AP: um estudo etnocientífico. In: Encontro sobre Abelhas, 8, 2008, Ribeirão Preto. **Anais...** Ribeirão Preto: FUNPEC, 2008. 812p. p. 729-739.

ROSHCHINA V. D. The excretory function of higher plants. Berlim: Springer Verlag, 1993.

RUIZ-MATUTE, A. I.; SORIA, A. C.; MARTNEZ-CASTRO I.; SANZ M. L. A New Methodology Based on GC–MS To Detect Honey Adulteration with Commercial Syrups. **Journal Agricultural Food Chemistry**, v. 18, n. 55, p. 7264-7269, ago., 2007.

SANZ M. L.; GONZALES M.; LORENZO C.; SANZ J.; MARTINEZ-CASTRO I. A contribution to the differentiation between nectar honey and honeydew honey. **Food Chemistry**, v. 91, n. 2, p. 313-317, jun., 2005.

SANZ M. L.; SANZ J.; MARTINEZ-CASTRO I. Gas chromatographic-mass spectrometric method for the qualitative and quantitative determination of disaccharides and trisaccharides in honey. **Journal of Chromatography**, v. 1059, n. 1-2, p. 143-148, dez., 2004.

SEREIA, M. J. Caracterização físico-química, microbiológica e polínica de amostras de méis orgânicos e não orgânicos produzidos por *Apis mellifera* L. (Hymenoptera: Apidae). Maringá, 2005. 115f. Dissertação (Mestrado em Produção Animal) - Programa de Pós-graduação em Zootecnia, Universidade Estadual de Maringá.

SEZERINO, A. A. Ecologia da polinização do mirtilo (*Vaccinium ashei* Reade cvs. Climax e Powderblue) no município de Bom Retiro, SC. Florianópolis, 2010. 88f. Dissertação (Mestrado em Recursos Genéticos Vegetais) – Faculdade de Agronomia, Universidade Federal de Santa Catarina.

SIDDIQUI, I. R. The sugars of the honey. **Advanced Carbohydrate Chemical Biochemical**, v.25, p.285-309, 1970.

SILVA C.L.; QUEIROZ A.J.M.; FIGUEIREDO R.M.F. Caracterização físico-química dos méis produzidos no Estado do Piauí para diferentes floradas. **Revista Brasileira de Engenharia Agrícola e Ambiental**, Campina Grande, v.8, n.2/3, p. 260-265, 2004.

SILVA, E. L. S. A vegetação de Roraima. In: BARBOSA, R. I.; FERREIRA, E. J. G.; CASTELLON, E. G. **Homem, ambiente e ecologia no Estado de Roraima**. Manaus: INPA, 1994, p. 401 - 415.

SILVA, K. F. N. L. Caracterização de méis da região do baixo Jaguaribe – CE. Campina Grande, 2005. 135f. Dissertação (Mestrado em Engenharia Agrícola) – Centro de Tecnologia e Recursos Naturais, Universidade Federal de Campina Grande.

SILVA, S. J. R. Fontes de pólen, mel amargo e pólen tóxico utilizados por três subespécies de abelhas Apis mellifera L., (africanas, italianas e cárnicas) na Amazônia setentrional, Brasil. Manaus, 2005. 140f. Tese (Doutorado em Biologia Tropical e Recursos Naturais) – Instituto Nacional de Pesquisas da Amazônica, Universidade Federal do Amazonas.

SILVA, S. J. R. Recursos tróficos de abelhas *Apis mellifera* L. (Hymenoptera, Apidade) em uma área de savana do Estado de Roraima: Fontes de néctar e pólen. Manaus, 2005. 88p. Dissertação (Mestrado em Biologia Tropical e Recursos Naturais) — Instituto Nacional de Pesquisas da Amazônica, Universidade Federal do Amazonas.

SILVA, S. J. R.; REBOUÇAS, M. A. P. Plantas melíferas de Roraima – Parte II. **Boletim do Museu Integrado de Roraima**, Boa Vista, v. 4, p. 31-38, 1998.

SNOWDON, J.A. The microbiology of honey - meeting your buyers specifications (Why they do what they do). **American Bee Journal,** Hamilton, v.139, n.1, p.51-59, 1999.

SODRÉ G. S. Características físico-químicas, análises polínicas de amostras de méis de *Apis mellifera* L. 1758 (Hymenoptera: Apidae) da região litoral norte do Estado da Bahia. 2000. 83p. Dissertação (Mestrado em Entomologia) - Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo.

SODRÉ, G. S. Características físico-químicas, microbiológicas e polínicas de amostras de méis de *Apis mellifera* L., 1758 (Hymenoptera:Apidae) dos estados do Ceará e Piauí. 2005. 127p. Tese (Doutorado em Entomologia) – Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba.

SODRÉ, G. S.; MARCHINI L. C.; MORETI A. C. C. C.; OTSUK I. P.; CARVALHO C. A. L. Características físico-químicas de amostras de méis de *Apis mellifera* L. (Hymenoptera:Apidae) do estado do Ceará. **Ciência Rural**, Santa Maria, v.37, n.4, p.1139-1144, mar./abr., 2007.

SOUZA B. A.; MARCHINI L. C.; DIAS C. T. S.; ODA-SOUZA M.; CARVALHO C. A. L.; ALVES R. M. O. Avaliação microbiológica de amostras de mel de trigoníneos (Apidae: Trigonini) do Estado da Bahia. Ciência e Tecnologia de Alimentos, Campinas, v.29, n.4, p. 798-802, out.-dez, 2009

SOUZA B. A.; MARCHINI L. C.; ODA-SOUZA M.; CARVALHO C. A. L.; ALVES R. M. O. Caracterização do mel produzido por espécies de *Melipona* Illiger, 1806 (apidae: meliponini) da região nordeste do Brasil: 1. Características físico-químicas. **Química Nova**, v.32, n.2, 303-308, 2009.

SOUZA, V. C. **Botânica Sistemática** – Guia ilustrado para identificação das famílias de Fanerógamas nativas e exóticas no Brasil, baseado em APG II. 2.ed. São Paulo: Nova Odessa, 2008.

SOUZA, W.G. Localização dos cultivos de acácia. Mensagem recebida por < wesley@fit-mf-br.com>25/02/2011.

STEELS, H.; JAMES, S.A; ROBERTS, I. N.; STRATFORD, M. *Zygosaccharomyces lentus*: a significante new osmophilic, preservative-resistant spoilage yeast, capable of grow at low temperature. **Journal of Appied Microbiology**, v. 87, n. 4, p. 520-527, out., 1999.

SWALLOW, K. W.; LOW, N. H. Analysis and Quantitation of the Carbohydrates in Honey Using High-Performance Liquid Chromatography. **Journal Agricultural Food Chemistry**, v. 38, p. 1828-1832, 1990.

TEIXEIRA, E. W.; MESSAGE, D.; MEIRA, R. M. S. A.; SALATINO, A. Indicadores da Origem Botânica da Própolis: Importância e Perspectivas. **Revista da Indústria Animal, Nova Odessa**, v.60, n.1, p.83-106, 2003.

THEVET, A. Singularidades da França Antártica. São Paulo: EDUSP, 1978.

TILBURY, R.H. Xerotolerant (osmophilic) yeasts. In: SKINNER, F.A.; PASSMORE, S.M.; DAVENPORT, R.R. **Biology and Activities of Yeasts**. London: Academic Press, 1980, p. 153–176.

UNIÃO EUROPÉIA. Directiva 2001/110/CE do Conselho de 20 de dezembro de 2001. Relativa ao mel. **Jornal Oficial das Comunidades Europeias**, 12 de janeiro de 2002.

WESTON, R. J.; BROCKLEBANK, L. K. The oligosaccharide composition of some New Zealand honeys. **Food Chemical**, v. 64, n.1, p. 33-37, jan.,1999.

WHITE Jr., J. W. Detection of Honey Adulteration by Carbohydrate Analysis. **Journal of Association** of the Official Analytical Chemists, v. 63, n. 1, p. 11-18, jan., 1980.

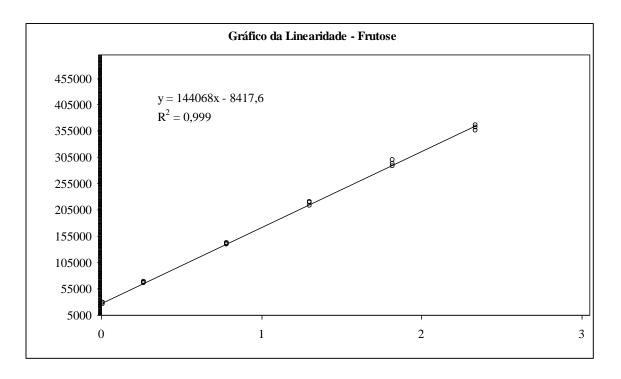
WHITE Jr., J. W. Honey. Advances in Food Research, v. 22, p. 287-374, 1978.

WHITE, Jr., J. W.; RIETHOF, M. L.; SUBERS, M. H.; KUSHNIR, I. Composition of American honeys. U S Department of Agriculture, n.1261, p.1–124, abr., 1962.

WILSON, B. A colméia: nossa história com as abelhas. Rio de Janeiro: Rocco, 2005.

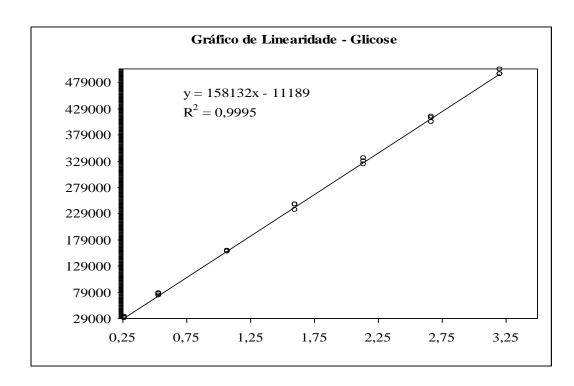
WINSTON, M. L. A biologia da Abelha. Porto Alegre: Magister, 2003.

WOLFF, D. Nectar sugar composition and volumes of 47 species of Gentianales from a Southern Ecuadorian Montane Forest. **Annals of Botany,** v.97, p.767-777, 2006.

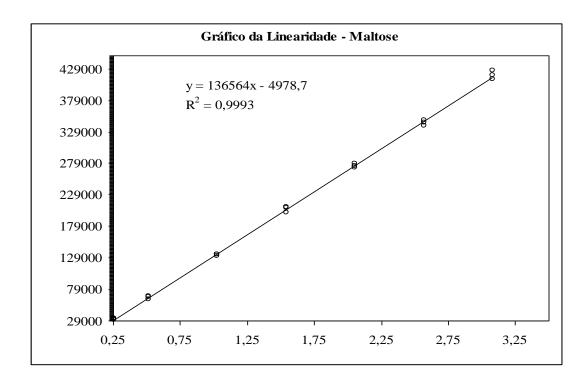

YOON, S.; MUKERJEA, R.; ROBYT, J. F. Specificity of yeast (*Saccharomyces cerevisiae*) in removing carbohydrates by fermentation. **Carbohydrate Research**, v.338, n.1, p. 1127–1132, maio, 2003.

APÊNDICES

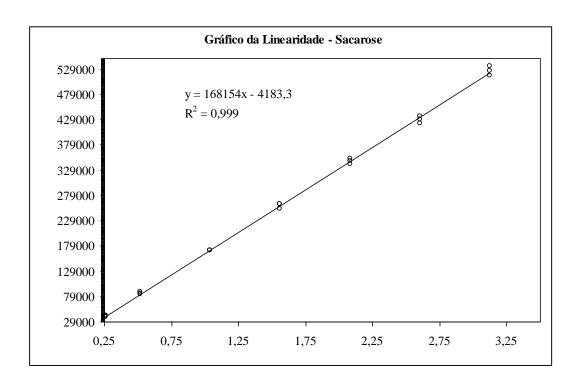
 $\mathbf{AP\hat{E}NDICE}~\mathbf{A}$ - Linearidade para açúcares em triplicata.


FRUTOSE: concentração injetada X resposta em área e gráfico de linearidade.

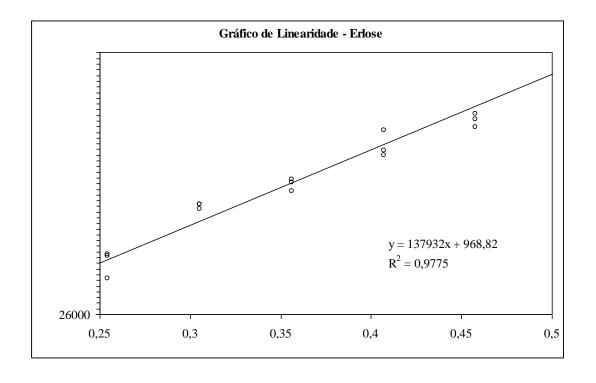
Pontos	X = Conc.(mg/ml)	Y=Resp.
1	0,25893252	25483
2	0,25893252	28387
3	0,25893252	28475
4	0,51786504	68395
5	0,51786504	66639
6	0,51786504	65020
7	1,03573008	138680
8	1,03573008	140360
9	1,03573008	141720
10	1,55359512	212058
11	1,55359512	218428
12	1,55359512	219946
13	2,07146016	287986
14	2,07146016	292339
15	2,07146016	299657
16	2,58932520	361870
17	2,5893252	355967
18	2,5893252	366328


GLICOSE: concentração injetada X resposta em área e gráfico de linearidade.

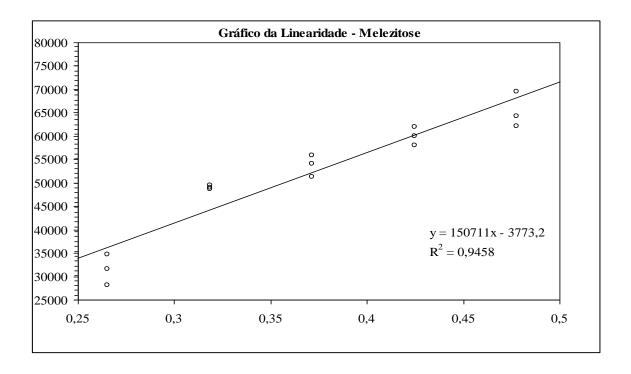
Pontos	X=Conc.(mg/ml)	Y=Resp.
1	0,26728884	29728
2	0,26728884	31583
3	0,26728884	29861
4	0,53457768	76523
5	0,53457768	75375
6	0,53457768	72361
7	1,06915536	156335
8	1,06915536	157384
9	1,06915536	157078
10	1,60373304	235814
11	1,60373304	245383
12	1,60373304	246211
13	2,13831072	322878
14	2,13831072	328273
15	2,13831072	333799
16	2,67288840	410239
17	2,67288840	403312
18	2,67288840	413724
19	3,20746608	494774
20	3,20746608	493947
21	3,20746608	502882


MALTOSE: concentração injetada X resposta em área e gráfico de linearidade.

Pontos	X = Conc.(mg/ml)	Y = Resp.
1	0,25694760	30702
2	0,25694760	31406
3	0,25694760	32167
4	0,51389520	67982
5	0,51389520	63317
6	0,51389520	66118
7	1,02779040	134795
8	1,02779040	131701
9	1,02779040	133928
10	1,54168560	200241
11	1,54168560	208985
12	1,54168560	208177
13	2,05558080	272434
14	2,05558080	275089
15	2,05558080	278835
16	2,56947600	343194
17	2,56947600	338627
18	2,56947600	347594
19	3,08337120	412143
20	3,08337120	419009
21	3,08337120	425579


SACAROSE: concentração injetada X resposta em área e gráfico de linearidade.

Pontos	X = Conc.(mg/ml)	Y = Resp.
1	0,26035170	37915
2	0,26035170	39858
3	0,26035170	41158
4	0,52070340	87573
5	0,52070340	82933
6	0,52070340	84824
7	1,04140680	169479
8	1,04140680	169695
9	1,04140680	170516
10	1,56211020	251861
11	1,56211020	261522
12	1,56211020	261891
13	2,08281360	340601
14	2,08281360	346615
15	2,08281360	351986
16	2,60351700	428617
17	2,60351700	421751
18	2,60351700	434581
19	3,12422040	515612
20	3,12422040	525885
21	3,12422040	534788


ERLOSE: concentração injetada X resposta em área e gráfico de linearidade.

Pontos	X = Conc.(mg/ml)	Y = Resp.
1	0,203503664	26471
2	0,203503664	28218
3	0,203503664	30368
4	0,254379580	36944
5	0,254379580	36693
6	0,254379580	32542
7	0,305255496	45236
8	0,305255496	46209
9	0,305255496	46116
10	0,356131412	50711
11	0,356131412	50115
12	0,356131412	48569
13	0,407007328	55204
14	0,407007328	59707
15	0,407007328	55999
16	0,457883244	61781
17	0,457883244	60296
18	0,457883244	62682
19	0,50875916	71033
20	0,50875916	72687
21	0,50875916	74321

MELEZITOSE: concentração injetada X resposta em área e gráfico de linearidade.

Pontos	X = Conc.(mg/ml)	Y = Resp.
1	0,212331456	25429
2	0,212331456	28774
3	0,212331456	32220
4	0,265414320	34677
5	0,265414320	31618
6	0,265414320	28113
7	0,318497184	48635
8	0,318497184	49006
9	0,318497184	49463
10	0,371580048	54067
11	0,371580048	51257
12	0,371580048	55922
13	0,424662912	60045
14	0,424662912	61883
15	0,424662912	57957
16	0,477745776	69554
17	0,477745776	62073
18	0,477745776	64225
19	0,53082864	72156
20	0,53082864	79397
21	0,53082864	80319

 $\label{eq:APENDICEB} \textbf{APENDICE B} - \text{Teste para outliers baseado no resíduo Jacknife} - \text{Ji}.$

 ${\bf FRUTOSE-Teste\ para\ outliers\ baseado\ no\ resíduo\ Jacknife\ -\it Ji}$

n	Preditor	Resposta	Resíduo	Jacknife	Student	Leverage	D. Cook
Pontos	X_i	Y_i	e_i	Ji	r_i	h_i	D_i
1	0,25893252	25483	-3090,93	-1,597	-1,519	0,151	0,205
2	0,25893252	28387	-186,93	-0,088	-0,092	0,151	0,001
3	0,25893252	28475	-98,93	-0,047	-0,049	0,151	0,000
4	0,51786504	68395	2571,77	1,261	1,237	0,113	0,098
5	0,51786504	66639	815,77	0,380	0,393	0,113	0,010
6	0,51786504	65020	-803,23	-0,374	-0,386	0,113	0,010
7	1,03573008	138680	-1641,81	-0,759	-0,771	0,069	0,022
8	1,03573008	140360	38,19	0,017	0,018	0,069	0,000
9	1,03573008	141720	1398,19	0,642	0,657	0,069	0,016
10	1,55359512	212058	-2762,40	-1,331	-1,295	0,066	0,059
11	1,55359512	218428	3607,60	1,828	1,691	0,066	0,101
13	2,07146016	287986	-1332,99	-0,625	-0,638	0,103	0,023
14	2,07146016	292339	3020,01	1,512	1,445	0,103	0,120
16	2,58932520	361870	-1947,58	-0,977	-0,975	0,181	0,105
18	2,5893252	366328	2510,42	1,290	1,257	0,181	0,175
19	3,10719024	436219	-2097,16	-1,155	-1,135	0,300	0,276
n =16			Valor crític	o = 2,160	2,145	0,250	0,729

 $\operatorname{GLICOSE}$ – Teste para outliers baseado no resíduo Jacknife - Ji

n	Preditor	Resposta	Resíduo	Jacknife	Student	Leverage	D. Cook
Pontos	X_i	Y_i	e_i	$oldsymbol{J}_i$	r_i	$m{h}_i$	D_i
1	0,26728884	29728	-1811,45	-0,873	-0,875	0,130	0,057
2	0,26728884	31583	43,55	0,020	0,021	0,130	0,000
3	0,26728884	29861	-1678,45	-0,806	-0,811	0,130	0,049
4	0,53457768	76523	2806,09	1,378	1,332	0,100	0,099
5	0,53457768	75375	1658,09	0,780	0,787	0,100	0,035
6	0,53457768	72361	-1355,91	-0,634	-0,644	0,100	0,023
7	1,06915536	156335	-1736,81	-0,800	-0,809	0,064	0,023
8	1,06915536	157384	-687,81	-0,311	-0,320	0,064	0,004
9	1,06915536	157078	-993,81	-0,451	-0,463	0,064	0,007
11	1,60373304	245383	2956,29	1,419	1,374	0,062	0,062
12	1,60373304	246211	3784,29	1,906	1,759	0,062	0,102
13	2,13831072	322878	-3903,61	-2,017	-1,845	0,092	0,172
14	2,13831072	328273	1491,39	0,690	0,705	0,092	0,025
16	2,67288840	410239	-897,51	-0,425	-0,440	0,155	0,018
18	2,67288840	413724	2587,49	1,286	1,268	0,155	0,148
19	3,20746608	494774	-717,42	-0,358	-0,373	0,252	0,023
20	3,20746608	493947	-1544,42	-0,785	-0,804	0,252	0,109
	n =17		Valor críti	co = 2,145	2,131	0,235	0,726

MALTOSE - Teste para outliers baseado no resíduo Jacknife - Ji

N	Preditor	Resposta	Resíduo	Jacknife	Student	Leverage	D. Cook
Pontos	X_i	Y_i	e_i	$oldsymbol{J}_i$	r_i	$oldsymbol{h}_i$	D_i
1	0,25694760	30702	174,41	0,065	0,067	0,123	0,000
2	0,25694760	31406	878,41	0,329	0,335	0,123	0,008
3	0,25694760	32167	1639,41	0,620	0,626	0,123	0,027
4	0,51389520	67982	2479,49	0,934	0,931	0,093	0,044
5	0,51389520	63317	-2185,51	-0,818	-0,820	0,093	0,035
6	0,51389520	66118	615,49	0,226	0,231	0,093	0,003
7	1,02779040	134795	-657,35	-0,236	-0,242	0,058	0,002
8	1,02779040	131701	-3751,35	-1,428	-1,382	0,058	0,059
9	1,02779040	133928	-1524,35	-0,551	-0,562	0,058	0,010
10	1,54168560	200241	-5161,18	-2,072	-1,899	0,055	0,106
11	1,54168560	208985	3582,82	1,348	1,318	0,055	0,051
12	1,54168560	208177	2774,82	1,021	1,021	0,055	0,031
13	2,05558080	272434	-2918,01	-1,091	-1,091	0,085	0,055
14	2,05558080	275089	-263,01	-0,095	-0,098	0,085	0,000
15	2,05558080	278835	3482,99	1,323	1,302	0,085	0,079
16	2,56947600	343194	-2107,85	-0,799	-0,816	0,147	0,057
18	2,56947600	347594	2292,15	0,872	0,887	0,147	0,068
19	3,08337120	412143	3757,32	1,583	1,542	0,241	0,376
20	3,08337120	419009	-3108,68	-1,278	-1,275	0,241	0,258
n = 19			Valor crític	eo = 2,120	2,110	0,211	0,722

Número de outliers retirados: 2

 ${\bf SACAROSE}$ - Teste para outliers baseado no resíduo Jacknife - ${\it Ji}$

n	Preditor	Resposta	Resíduo	Jacknife	Student	Leverage	D. Cook
Pontos	X_i	Y_i	e_i	$oldsymbol{J_i}$	r_i	h_i	D_i
1	0,26035170	37915	-2239,65	-0,641	-0,646	0,123	0,029
2	0,26035170	39858	-296,65	-0,084	-0,086	0,123	0,001
3	0,26035170	41158	1003,35	0,284	0,289	0,123	0,006
4	0,52070340	87573	3779,90	1,086	1,072	0,093	0,059
5	0,52070340	82933	-860,10	-0,239	-0,244	0,093	0,003
6	0,52070340	84824	1030,90	0,286	0,292	0,093	0,004
7	1,04140680	169479	-1591,00	-0,433	-0,443	0,058	0,006
8	1,04140680	169695	-1375,00	-0,374	-0,383	0,058	0,005
9	1,04140680	170516	-554,00	-0,150	-0,154	0,058	0,001
10	1,56211020	251861	-6485,90	-1,942	-1,803	0,055	0,095
11	1,56211020	261522	3175,10	0,875	0,883	0,055	0,023
12	1,56211020	261891	3544,10	0,983	0,985	0,055	0,028
13	2,08281360	340601	-5022,81	-1,457	-1,419	0,085	0,093
14	2,08281360	346615	991,19	0,271	0,280	0,085	0,004
15	2,08281360	351986	6362,19	1,924	1,797	0,085	0,150
16	2,60351700	428617	-4283,71	-1,262	-1,253	0,147	0,135
18	2,60351700	434581	1680,29	0,475	0,491	0,147	0,021
19	3,12422040	515612	-4565,61	-1,436	-1,415	0,241	0,317
20	3,12422040	525885	5707,39	1,864	1,769	0,241	0,496
n = 19			Valor crític	o = 2,120	2,110	0,211	0,722

Número de outliers retirados: 2

 ${f ERLOSE}$ - Teste para outliers baseado no resíduo Jacknife - Ji

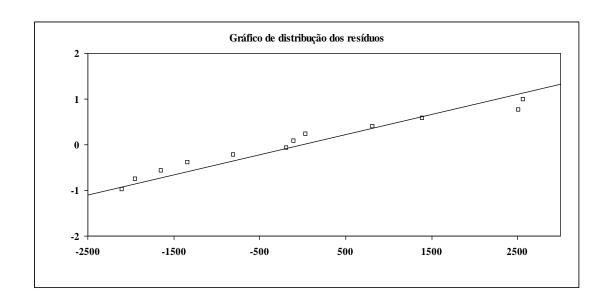
N	Preditor	Resposta	Resíduo	Jacknife	Student	Leverage	D. Cook
Pontos	X_i	Y_i	e_i	$oldsymbol{J}_i$	r_i	h_i	D_i
1	0,203503664	26471	-2567,39	-1,266	-1,223	0,122	0,104
2	0,203503664	28218	-820,39	-0,389	-0,391	0,122	0,011
3	0,203503664	30368	1329,61	0,635	0,633	0,122	0,028
4	0,254379580	36944	888,21	0,407	0,412	0,074	0,007
5	0,254379580	36693	637,21	0,292	0,296	0,074	0,004
6	0,254379580	32542	-3513,79	-1,733	-1,630	0,074	0,107
7	0,305255496	45236	2162,82	0,995	0,991	0,051	0,026
8	0,305255496	46209	3135,82	1,489	1,436	0,051	0,055
9	0,305255496	46116	3042,82	1,439	1,394	0,051	0,052
10	0,356131412	50711	620,43	0,277	0,284	0,051	0,002
11	0,356131412	50115	24,43	0,011	0,011	0,051	0,000
12	0,356131412	48569	-1521,57	-0,686	-0,697	0,051	0,013
13	0,407007328	55204	-1903,96	-0,871	-0,883	0,074	0,031
14	0,407007328	59707	2599,04	1,211	1,206	0,074	0,058
15	0,407007328	55999	-1108,96	-0,500	-0,514	0,074	0,011
16	0,457883244	61781	-2344,36	-1,106	-1,117	0,122	0,087
17	0,457883244	60296	-3829,36	-1,919	-1,824	0,122	0,231
18	0,457883244	62682	-1443,36	-0,667	-0,687	0,122	0,033
19	0,50875916	71033	-109,75	-0,052	-0,055	0,193	0,000
20	0,50875916	72687	1544,25	0,741	0,767	0,193	0,071
21	0,50875916	74321	3178,25	1,606	1,579	0,193	0,299
n = 21			Valor crític	co = 2,101	2,093	0,190	0,719

Número de outliers retirados: 2

MELEZITOSE - Teste para outliers baseado no resíduo Jacknife - Ji

n	Preditor	Resposta	Resíduo	Jacknife	Student	Leverage	D. Cook
Pontos	X_i	Y_i	e_i	$oldsymbol{J}_i$	r_i	h_i	D_i
1	0,212331456	25429	-3866,25	-1,187	-1,145	0,128	0,097
2	0,212331456	28774	-521,25	-0,154	-0,154	0,128	0,002
3	0,212331456	32220	2924,75	0,883	0,866	0,128	0,055
4	0,265414320	34677	-2404,89	-0,693	-0,693	0,078	0,020
5	0,265414320	31618	-5463,89	-1,676	-1,574	0,078	0,105
7	0,318497184	48635	3766,46	1,082	1,070	0,053	0,032
8	0,318497184	49006	4137,46	1,198	1,176	0,053	0,039
9	0,318497184	49463	4594,46	1,343	1,306	0,053	0,048
10	0,371580048	54067	1411,81	0,391	0,401	0,053	0,005
11	0,371580048	51257	-1398,19	-0,387	-0,397	0,053	0,004
12	0,371580048	55922	3266,81	0,923	0,928	0,053	0,024
13	0,424662912	60045	-396,83	-0,110	-0,114	0,078	0,001
14	0,424662912	61883	1441,17	0,401	0,415	0,078	0,007
15	0,424662912	57957	-2484,83	-0,699	-0,716	0,078	0,022
16	0,477745776	69554	1325,52	0,376	0,393	0,128	0,011
17	0,477745776	62073	-6155,48	-1,918	-1,823	0,128	0,245
18	0,477745776	64225	-4003,48	-1,176	-1,186	0,128	0,103
19	0,53082864	72156	-3859,12	-1,173	-1,196	0,204	0,183
20	0,53082864	79397	3381,88	1,019	1,048	0,204	0,140
21	0,53082864	80319	4303,88	1,322	1,334	0,204	0,227
n = 20			Valor crític	co = 2,110	2,101	0,200	0,721

APÊNDICE C - Teste de Normalidade dos resíduos **FRUTOSE:**

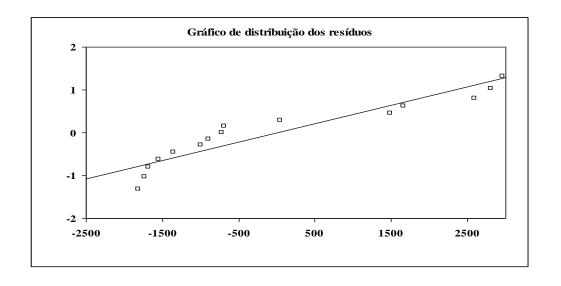

Número de resíduos = 16

i	p_i	b_i	e_i
1	0,0385	-1,7688	-3090,93
2	0,1000	-1,2816	-2762,40
3	0,1615	-0,9882	-2097,16
4	0,2231	-0,7618	-1947,58
5	0,2846	-0,5692	-1641,81
6	0,3462	-0,3957	-1332,99
7	0,4077	-0,2335	-803,23
8	0,4692	-0,0772	-186,93
9	0,5308	0,0772	-98,93
10	0,5923	0,2335	38,19
11	0,6538	0,3957	815,77
12	0,7154	0,5692	1398,19
13	0,7769	0,7618	2510,42
14	0,8385	0,9882	2571,77
15	0,9000	1,2816	3020,01
16	0,9615	1,7688	3607,60

R = 0.9817 Desvio da Normal : p > 0.10; Os resíduos seguem a Normal

Valores Críticos de R:

Rcrit (a: 0,10) = 0,9529 Rcrit (a: 0,05) = 0,9411 Rcrit (a: 0,01) = 0,9153

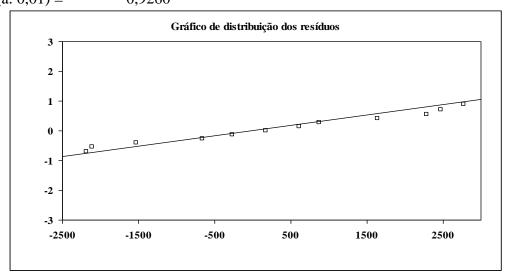


GLICOSE: Teste de Normalidade dos resíduos

Número de resíduos =	: 17		
i	p_i	\boldsymbol{b}_i	e_i
1	0,0362	-1,7962	-3903,61
2	0,0942	-1,3153	-1811,45
3	0,1522	-1,0272	-1736,81
4	0,2101	-0,8059	-1678,45
5	0,2681	-0,6185	-1544,42
6	0,3261	-0,4507	-1355,91
7	0,3841	-0,2948	-993,81
8	0,4420	-0,1458	-897,51
9	0,5000	0,000	-717,42
10	0,5580	0,1458	-687,81
11	0,6159	0,2948	43,55
12	0,6739	0,4507	1491,39
13	0,7319	0,6185	1658,09
14	0,7899	0,8059	2587,49
15	0,8478	1,0272	2806,09
16	0,9058	1,3153	2956,29
17	0,9638	1,7962	3784,29

 $R=0,\,9636$ Desvio da Normal : p>0,10 ; Os resíduos seguem a Normal Valores Críticos de $R\colon$

Rcrit (a: $0,10$) =	0,9549
Rcrit (a: 0.05) =	0,9437
Rcrit (a: 0,01) =	0,9192

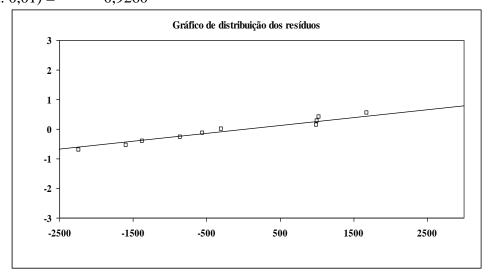

MALTOSE: Teste de Normalidade dos resíduos

Número de resíduos	s = 19		
i	p_i	b_i	e_i
1	0,0325	-1,8457	-5161,18
2	0,0844	-1,3760	-3751,35
3	0,1364	-1,0968	-3108,68
4	0,1883	-0,8841	-2918,01
5	0,2403	-0,7055	-2185,51
6	0,2922	-0,5469	-2107,85
7	0,3442	-0,4011	-1524,35
8	0,3961	-0,2634	-657,35
9	0,4481	-0,1306	-263,01
10	0,5000	0,0000	174,41
11	0,5519	0,1306	615,49
12	0,6039	0,2634	878,41
13	0,6558	0,4011	1639,41
14	0,7078	0,5469	2292,15
15	0,7597	0,7055	2479,49
16	0,8117	0,8841	2774,82
17	0,8636	1,0968	3482,99
18	0,9156	1,3760	3582,82
19	0,9675	1,8457	3757,32

R = 0.9837 Desvio da Normal : p > 0.10 ; Os resíduos seguem a Normal

Valores Críticos de R:

Rcrit (a: 0,10) = 0,9584 Rcrit (a: 0,05) = 0,9483 Rcrit (a: 0,01) = 0,9260

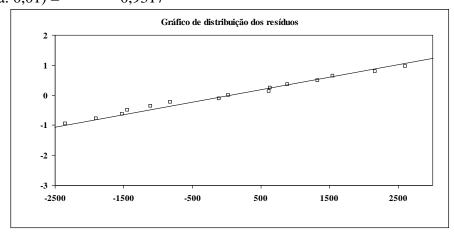

SACAROSE: Teste de Normalidade dos resíduos

Número de resíduos =	= 19		
i	p_i	b_i	e_i
1	0,0325	-1,8457	-6485,90
2	0,0844	-1,3760	-5022,81
3	0,1364	-1,0968	-4565,61
4	0,1883	-0,8841	-4283,71
5	0,2403	-0,7055	-2239,65
6	0,2922	-0,5469	-1591,00
7	0,3442	-0,4011	-1375,00
8	0,3961	-0,2634	-860,10
9	0,4481	-0,1306	-554,00
10	0,5000	0,0000	-296,65
11	0,5519	0,1306	991,19
12	0,6039	0,2634	1003,35
13	0,6558	0,4011	1030,90
14	0,7078	0,5469	1680,29
15	0,7597	0,7055	3175,10
16	0,8117	0,8841	3544,10
17	0,8636	1,0968	3779,90
18	0,9156	1,3760	5707,39
19	0,9675	1,8457	6362,19

R = 0.9925 Desvio da Normal : p > 0.10; Os resíduos seguem a Normal

Valores Críticos de R:

Rcrit (a: 0,10) = 0,9584 Rcrit (a: 0,05) = 0,9483 Rcrit (a: 0,01) = 0,9260

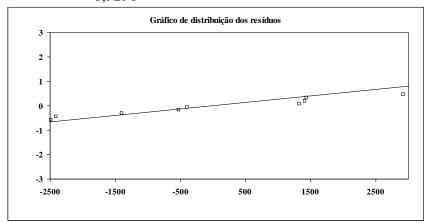

ERLOSE: Teste de Normalidade dos resíduos

Número de resíd	luos = 21		
i	p_i	b_i	e_i
1	0,0294	-1,8895	-3829,36
2	0,0765	-1,4292	-3513,79
3	0,1235	-1,1575	-2567,39
4	0,1706	-0,9518	-2344,36
5	0,2176	-0,7802	-1903,96
6	0,2647	-0,6289	-1521,57
7	0,3118	-0,4909	-1443,36
8	0,3588	-0,3616	-1108,96
9	0,4059	-0,2382	-820,39
10	0,4529	-0,1182	-109,75
11	0,5000	0,0000	24,43
12	0,5471	0,1182	620,43
13	0,5941	0,2382	637,21
14	0,6412	0,3616	888,21
15	0,6882	0,4909	1329,61
16	0,7353	0,6289	1544,25
17	0,7824	0,7802	2162,82
18	0,8294	0,9518	2599,04
19	0,8765	1,1575	3042,82
20	0,9235	1,4292	3135,82
21			3178,25

 $R=0,9932 \; Desvio \; da \; Normal: p>0,10$; Os resíduos seguem a Normal

Valores Críticos de R:

Rcrit (a: 0,10) = 0,9614 Rcrit (a: 0,05) = 0,9521 Rcrit (a: 0,01) = 0,9317

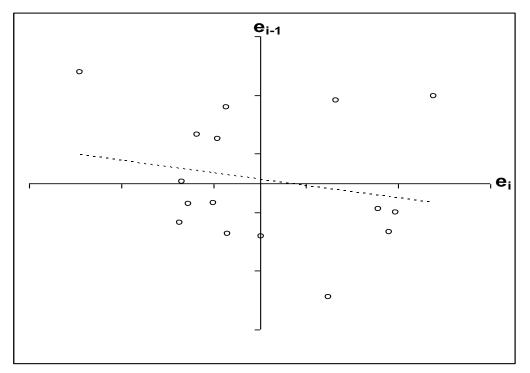

MELEZITOSE: Teste de Normalidade dos resíduos

Número de resíduo	os = 20		
i	p_i	b_i	e_i
1	0,0309	-1,8682	-6155,48
2	0,0802	-1,4034	-5463,89
3	0,1296	-1,1281	-4003,48
4	0,1790	-0,9191	-3866,25
5	0,2284	-0,7441	-3859,12
6	0,2778	-0,5895	-2484,83
7	0,3272	-0,4478	-2404,89
8	0,3765	-0,3146	-1398,19
9	0,4259	-0,1868	-521,25
10	0,4753	-0,0619	-396,83
11	0,5247	0,0619	1325,52
12	0,5741	0,1868	1411,81
13	0,6235	0,3146	1441,17
14	0,6728	0,4478	2924,75
15	0,7222	0,5895	3266,81
16	0,7716	0,7441	3381,88
17	0,8210	0,9191	3766,46
18	0,8704	1,1281	4137,46
19	0,9198	1,4034	4303,88
20	0,9691	1,8682	4594,46

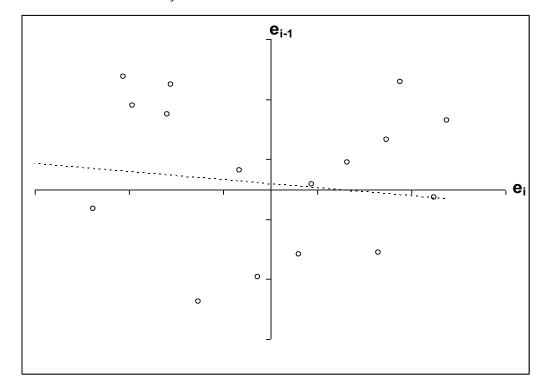
 $R=0,\!9704$ Desvio da Normal : $p>0,\!10$; Os resíduos seguem a Normal

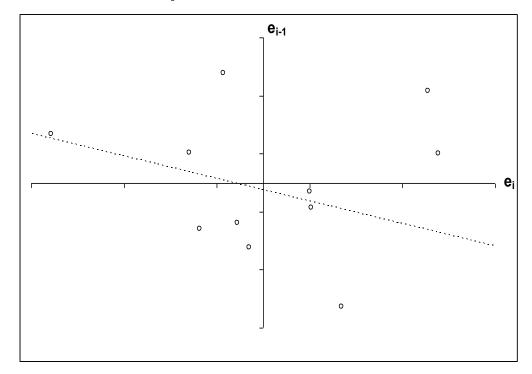
Valores Críticos de R:

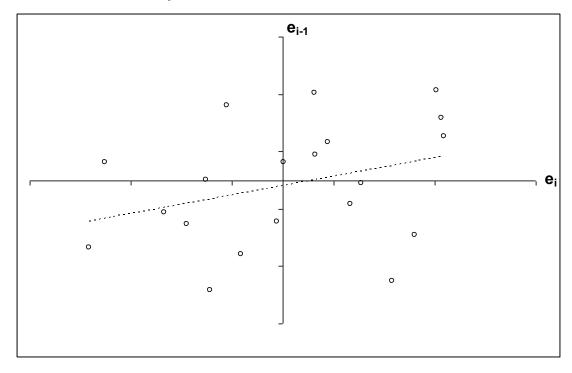
Rcrit (a: 0,10) = 0,9600 Rcrit (a: 0,05) = 0,9503 Rcrit (a: 0,01) = 0,9290

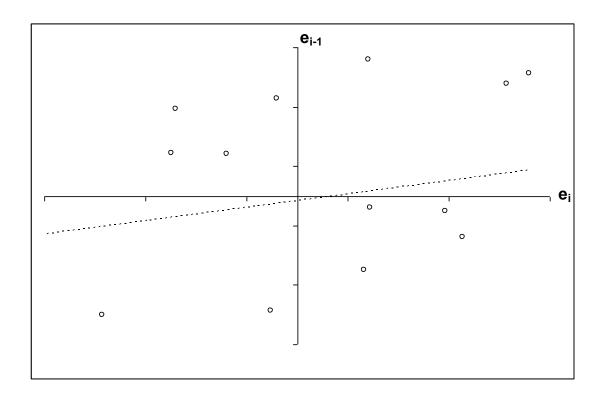


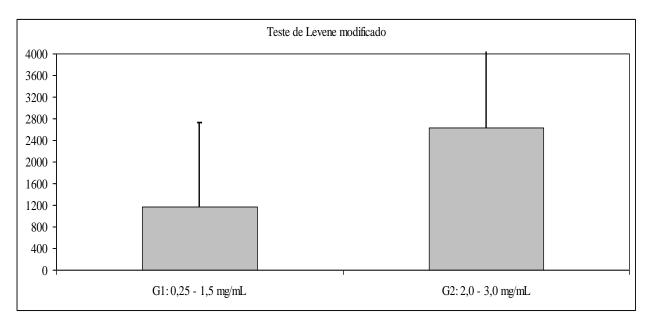
 $\mathbf{AP\hat{E}NDICE}~\mathbf{D}$ - Teste de Durbin-Watson para autocorrelação dos resíduos

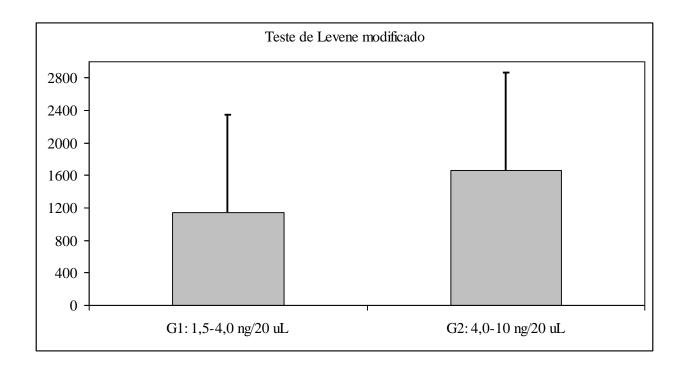

FRUTOSE: Não há autocorrelação

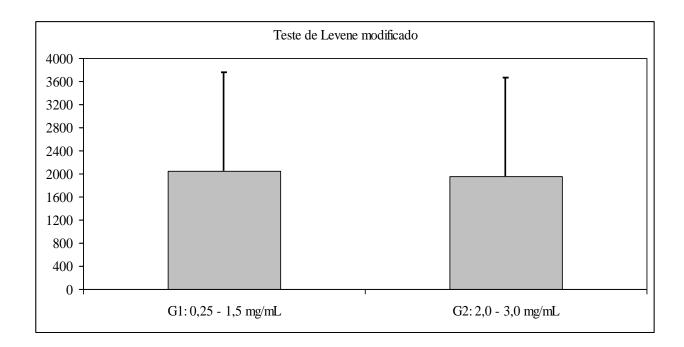

GLICOSE: Não há autocorrelação

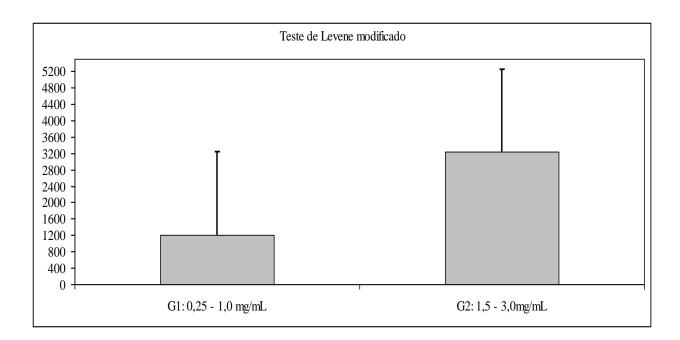

MALTOSE: Não há autocorrelação

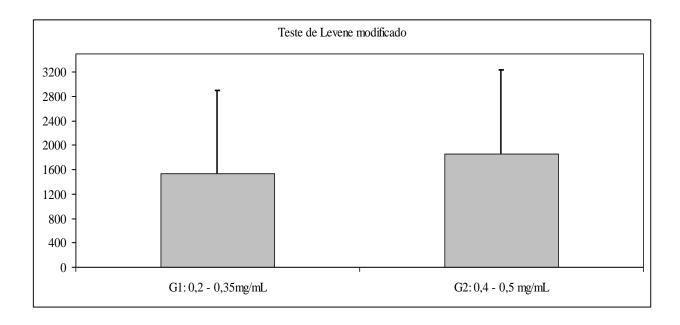

SACAROSE: Não há autocorrelação

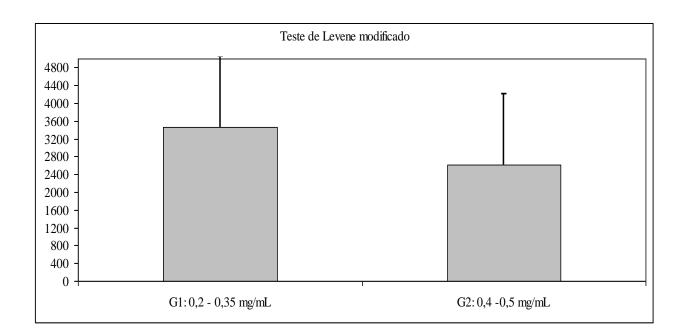

ERLOSE: Não há autocorrelação


MELEZITOSE: Não há autocorrelação


APÊNDICE E - Teste de Levene modificado **FRUTOSE:**


GLICOSE:


MALTOSE:


SACAROSE:

ERLOSE:

MELEZITOSE:

APÊNDICE F: Resultados das concentrações dos teores de açúcares nas amostras analisadas em triplicata.

	-	G1:				
	Frutose %	Glicose %	Sacarose %	Maltose %	Erlose %	Melezitose %
1A	33,6549701	25,4555390	2,55819882	3,329056	1,80463	0,69874243
1B	32,18332	24,2614263	2,39041899	6,452633	1,71863	0,76548148
1C	34,18534	25,8225489	2,62691980	6,518758	1,71695	0,54535322
2A	31,7297484	25,6420769	5,077282258	5,19420888	1,448314	0,024525341
2B	31,3639745	25,6144422	5,115216253	2,70401137	0,639803	0,148782425
2C	31,3904299	25,6029336	5,125093118	4,66488085	0,636347	0,128304325
3A	29,9998447	31,8010854	13,20894253	1,002974	0,268301	0,188451116
3B	29,7888886	31,4756793	13,35926352	0,98936277	0,296897	0,19692635
3C	30,3443494	32,0690269	13,47088447	1,00801143	0,293791	0,186091902
4A	33,6688562	25,528474	3,835171196	6,75655407	2,012095	0,077951818
4B	32,4184205	24,5523151	3,690561954	4,39308398	2,025197	0,142216876
4C	34,0539298	25,6030099	3,913429562	6,71375344	1,813654	0,12847207
5A	32,7114339	26,298001	4,274212892	6,61084424	1,679206	0,132716172
5B	32,6776798	26,3172512	4,760966517	6,1024303	1,792141	0,073435831
5C	31,7114333	25,4608964	4,152222261	5,65419207	1,614896	0,121455463
6A	36,0699176	28,8581679	0,737938335	5,11426759	0,913045	0,110344276
6B	39,8336091	31,9032531	1,069808794	3,49771531	1,140471	0,117136202
6C	38,6246284	30,9801746	0,883375352	5,76067459	0,848167	0,116778053
7A	30,5325213	30,8438081	7,697317957	1,86171166	0,47694	0,230879028
7B	30,6193367	31,0979269	7,735459644	1,90798954	0,468631	0,198905423
7C	31,1341544	31,5543115	7,858219278	1,72364559	0,469587	0,196637281
8A	30,4708401	32,0960276	8,750858246	1,39619153	0,329089	0,190110686
8B	30,4924502	31,9872299	8,703472061	1,40238765	0,321287	0,194027773
8C	31,2379353	33,0847205	8,96390651	1,33652745	0,331715	0,206337006
9A	29,8037129	31,7337055	10,33318657	0,025	0,096366	0,179121747
9B	30,1253387	32,3631671	9,682029409	0,025	0,106967	0,203435901
9C	30,021638	31,4196767	10,2336141	0,025	0,10494	0,185877069
10A	31,3612881	32,9747006	5,449071934	2,57772401	0,337494	0,086687257
10B	39,4698692	41,1440696	6,592063795	2,29353975	0,346561	0,090318004
10C	32,6215313	33,8558014	5,693891665	2,97542714	0,343591	0,101024834
11A	33,818668	34,4054956	6,936766	0,57850429	0,096118	0,097564879
11B	35,1105696	36,3152349	8,37227864	0,6175099	0,107029	0,103997589
11C	34,6378976	35,7061727	8,413500572	0,60832437	0,096411	0,093558209
12A	33,3071868	31,9251254	9,588246358	0,63481663	0,174583	0,128291653

APÊNDICE F: Resultados das concentrações dos teores de açúcares nas amostras analisadas em triplicata. Continuação.

12B	34,0676507	32,6817466	9,238991067	0,61068114	0,165579	0,13204724
12C	33,953432	33,1370118	9,249091376	0,14676108	0,173882	0,12856686
13A	38,5915926	40,5358961	3,265353787	1,71975793	0,204718	0,149243692
13B	34,8499257	36,9525133	4,42785361	1,57435368	0,15165	0,113888149
13C	35,552568	37,6936584	4,613227519	1,59190608	0,143019	0,094188879
14A	36,2800199	33,3668489	1,096518568	3,12129883	0,233254	0,089373942
14B	38,7138114	35,5926733	1,124285956	3,70637649	0,236368	0,095869944
14C	36,2630811	33,3532609	1,053008684	2,96857079	0,216363	0,080164234
15A	33,3323078	35,3764216	5,055399271	1,94835339	0,256669	0,177748405
15B	35,9005178	37,9594943	5,372711063	2,04722195	0,268855	0,2052997
15C	35,3804485	37,1915131	5,356991675	2,12622535	0,273058	0,19940851
16A	34,8958092	37,7178654	0,790339805	2,6690415	0,148073	0,067700715
16B	35,2695972	38,2208331	0,787958956	3,2984859	0,153051	0,072046621
16C	35,8269116	38,7542597	0,784876271	2,81989765	0,156671	0,062471309
17A	32,9365034	36,2429704	4,002540189	1,65965143	0,187785	0,025
17B	32,5798883	34,6319039	4,031920814	1,70037252	0,193196	0,025
17C	31,9620122	34,9269003	4,1664781	1,86485426	0,177563	0,025
18A	33,2314189	31,6467442	5,981929721	0,10809133	0,172663	0,113204121
18B	33,8262038	32,321753	5,988332553	0,17858892	0,178752	0,12285908
18C	35,0898581	33,5192729	5,941273425	0,10339814	0,182081	0,112131171
19A	35,2410804	34,4358168	7,456989255	1,003478	-0,00537	0,092061034
19B	34,8329397	33,8126647	7,342871481	1,46439235	0,163415	0,092688718
19C	34,0126212	33,0938952	6,660593167	0,73966554	0,11883	0,091499588
20A	33,8069978	32,6508153	6,622327999	1,01019271	0,157622	0,10384013
20B	34,3606248	33,1613877	7,419674361	1,53593868	0,170767	0,110363107
20C	34,2679273	33,0073643	6,796977353	1,21032083	0,159727	0,094955082
21A	37,7614131	36,2927894	6,755667627	1,34535925	0,222774	0,127220745
21B	35,1005008	34,0277918	6,19845705	1,6443821	0,195194	0,122018347
21C	36,4115038	35,1287359	0,923135839	1,19032698	0,17897	0,116312163
22A	35,8924545	34,8020181	7,72832783	1,69158686	0,328531	0,149447421
22B	36,5714544	35,2332503	7,927288273	1,82264769	0,189331	0,118353594
22C	32,6921862	32,0220742	7,226869514	1,64130375	0,298151	0,145436676
23A	39,9119735	38,8872774	8,432500012	1,76823272	0,249597	0,183955071
23B	37,9728976	36,8396682	8,115606325	1,77769426	0,218689	0,169718743

APÊNDICE F: Resultados das concentrações dos teores de açúcares nas amostras analisadas em triplicata. Continuação.

23C	41,7193497	40,291401	8,793332429	1,87090862	0,257265	0,205992343
24A	36,1482768	33,0968173	0,25	2,89322675	0,256618	0,520744279
24B	36,8827728	33,9957903	0,25	3,36326948	0,241033	0,538423461
24C	38,9681023	36,3770857	0,25	40,8099764	0,282695	0,568370154
25A	37,5848428	39,0168121	7,019030219	1,70403455	0,207546	0,119778235
25B	33,3422041	35,0180978	6,244695779	1,48792933	0,197645	0,119831094
25C	29,8444127	31,4213161	5,788256425	1,53712645	0,183598	0,102548838
26A	31,825687	33,3386584	7,014284037	1,5428408	0,265728	0,115741593
26B	34,0551812	35,7543248	7,790879081	1,67806462	0,291368	0,124325917
26C	32,8048677	34,4439315	7,135518067	1,60205231	0,286421	0,131061084
27A	34,6211733	36,0382503	6,978047043	1,98715628	0,233949	0,314784234
27B	37,68526	39,3250832	7,780634118	2,49208252	0,268654	0,295086131
27C	34,0704073	35,4064449	6,659794426	2,06044264	0,237241	0,241582402
28A	37,5215004	39,573592	2,421205221	2,09891986	0,196885	0,117741384
28B	36,8335295	38,9717736	2,295135801	2,14748289	0,180833	0,117372864
28C	36,3045417	38,3467914	2,250407233	2,57780385	0,193631	0,144412937
29A	32,9786976	35,2813023	7,237751801	1,47606872	0,153447	0,212804234
29B	35,4546465	37,990428	8,092354355	1,50630814	0,174455	0,252922079
29C	32,3969035	34,38403	7,375212682	1,54642884	0,163214	0,22239609

.

APENDICE G: Os cálculos dos resultados foram realizados na planilha do Microsoft Office Excel 2003, a partir da reta do gráfico exploratório construído através da curva de linearidade com X para concentração e Y para área do pico, considerando a massa da amostra pesada, o volume de injeção e a diluição das amostras, para cada amostra em triplicata.

mostra	Massa (g)	Fru	tose	Glicos	se	Saca	rose	Mal	Maltose		•	Mele	zitose		Res	ultados											
		Area	Conc.	Area	Conc.	Area	Conc.	Area	Conc.	Area	Conc.	Area	Conc.	Vol. Inj.	MASSA (g)	Frutose (mg/mL)	Glicose	Sacarose	Maltose	Erlose	Melezitose	Fru %	Gli %	Sac %	Mal %	ERL %	MEL
1A	2,5115	X	X	X	X	427276	2,599	841984	6,284	249650	1,809	8445	0,087	20	0,10046			2,569967			0,70195664	33,65497	25,4555390	2,55819882	3,329056	1,80463	0,69874243
1B	2,5094	X	X	X	X	398688	2,426	788432	5,886	232844	1,687	9419	0,093	20	0,10038			2,399407			0,76835969	32,18332	24,2614263	2,39041899	6,452633	1,71863	0,76548148
1C	2,5694	X	X	X	X	449045	2,73	887783	6,624	265224	1,922	6370	0,073	20	0,10278			2,699843			0,56049223	34,18534	25,8225489	2,62691980	6,518758	1,71695	0,54535322
1AF	X	X	X	X	X	X	X	X	X	301927	2,188	66662	0,467	20													
1AD	X	316629	2,274	258381	1,717	26274	0,178	25901	0,219	X	X	X	X	20	0,0067	2,25398553	1,704842	3	0,22296								
1BD	X	302133	2,173	245547	1,635	29278	0,196	54327	0,431	X	X	X	X	20	0,00669	2,153622045	1,62351		0,43179								
1CD	X	329383	2,363	268551	1,781	29324	0,197	56349	0,446	X	X	X	X	20	0,00685	2,342288227	1,769292	2	0,44665								
1ADF	X	356011	2,548	316968	2,089	122991	0,762	118806	0,91	X	X	X	X	20													
1AR	X									63484	0,457			20	0,02512					0,4532							
1BR	X									60455	0,435			20	0,02509					0,4313							
1CR	X									61818	0,445			20	0,02569					0,4412							
2A	2,5012	X	X	X	X	868594	5,263	696660	5,204	X	1,53	1748	0,148	20	0,10005						0,02453711	31,729748	25,642077	5,0772823	5,1942089	1,448314	0,024525341
2B	2,5333	X	X	X	X	859887	5,211	692428	5,172	X	1,536	20264	0,164	20	0,10133						0,15076421	31,363975	25,614442	5,1152163	2,7040114	0,639803	0,148782425
2C	2,5564	X	X	X	X	869187	5,267	702700	5,249	X	1,568	17394	0,145	20	0,10226						0,13119887	31,39043	25,602934	5,1250931	4,6648808	0,636347	0,128304325
2AF	X	X	X	X	X	817403	4,954	662232	4,948	X	1,721	48849	0,35	20													
2AD	X	296747	2,135	259241	1,722	53278	0,341	42710	0,344	X	X	X	X	20	0,00667	2,116331914	1,710292	3 0,338648	0,34645								
2BD	X	297101	2,138	262410	1,742	54436	0,348	20417	0,179	X	X	X	X	20	0,00676	2,118782843	1,730375	1 0,345557	0,18267								
2CD	X	300152	2,159	264776	1,757	55077	0,352	38839	0,315	X	X	X	X	20	0,00682	2,139906532	1,745369	1 0,349381	0,31801								
2ADF	X	343321	2,46	321994	2,121	145237	0,896	111474	0,855	X	X	X	X	20													
2AR										50935	0,366			20	0,02501					0,3623							
2BR										23325	0,165			20	0,02533					0,1621							
2CR										23407	0,166			20	0,02556					0,1627							
2CR										23407	0,166			20	0,02556					0,1627							

APENDICE G: Os cálculos dos resultados foram realizados na planilha do Microsoft Office Excel 2003, a partir da reta do gráfico exploratório construído através da curva de linearidade com X para concentração e Y para área do pico, considerando a massa da amostra pesada, o volume de injeção e a diluição das amostras, para cada amostra em triplicata. Continuação.

3A	2,5537	X	X	X	X	2098074	12,69	135007	1,03	38771	0,277	26386	0,204	20	0,10215	1,02	2452 0	,2741 (0,19249905	29,999845	31,801085	13,208943	1,002974 0,268301 0,18845	1116
3B	2,5634	X	X	X	X	2179507	13,18	133637	1,02	42959	0,308	27768	0,213	20	0,10254	1,01	1445 0	,3044	0,2019204	29,788889	31,475679	13,359264	0,9893628 0,296897 0,19692	635
3C	2,5401	X	X	X	X	2149145	12,99	134961	1,03	42142	0,302	25884	0,201	20	0,1016	1,02	2418 0	,2985 (0,18907682	30,344349	32,069027	13,470884	1,0080114 0,293791 0,18609	1902
3AF	X	X	X	X	X	X	X	X	X	86195	0,622	77169	0,535	20										
3AD	X	286148	2,061	331089	2,179	147286	0,909	ND	ND	X	X	X	X	20	0,00681	2,042949424 2,1656115 0,899511								
3BD	X	285186	2,055	328877	2,165	149581	0,923	ND	ND	X	X	X	X	20	0,00684	2,036288988 2,1515935 0,913204								
3CD	X	287947	2,074	332133	2,185	149457	0,922	ND	ND	X	X	X	X	20	0,00677	2,055404853 2,1722276 0,912464								
3ADF	X	365390	2,614	433551	2,83	228582	1,4	95015	0,733	X	X	X	X	20										
4A	2,5312	X	X	X	X	583630	3,543	884531	6,6	302252	2,191	9726	0,095	20	0,10125			(0,07892466	33,668856	25,528474	3,8351712	6,7565541 2,012095 0,07795	1818
4B	2,5406	X	X	X	X	572650	3,477	864126	6,448	309748	2,245	19349	0,158	20	0,10162			(0,14452648	32,41842	24,552315	3,690562	4,393084 2,025197 0,142216	5876
4C	2,5784	X	X	X	X	588439	3,572	896709	6,691	317423	2,301	17585	0,147	20	0,10314			(0,13250095	34,05393	25,60301	3,9134296	6,7137534 1,813654 0,12847	207
4AF	X	X	X	X	X	565962	3,436	855746	6,386	356385	2,584	74342	0,517	20										
4AD	X	319318	2,293	261268	1,735	39906	0,261	57630	0,455	X	X	X	X	20	0,00675	2,272602901 1,723138 0,258869 0,45	5606							
4BD	X	308301	2,216	251842	1,675	38425	0,252	36065	0,295	X	X	X	X	20	0,00677	2,196326375 1,663403 0,250033 0,29	9763							
4CD	X	329263	2,362	267147	1,772	41617	0,271	58387	0,461	X	X	X	X	20	0,00688	2,341457403 1,7603947 0,269077 0,46	6162							
4ADF	X	356024	2,549	310736	2,049	123565	0,766	115682	0,887	X	X	X	X	20										
4AR										57168	0,411			20	0,02025		0	,4074						
4BR										57744	0,415			20	0,02032		0	,4116						
4CR										52570	0,378			20	0,02063		0	,3741						
5A	2,5459	X	X	X	X	681100	4,131	801290	5,981	256514	1,858	17974	0,149	20	0,10184			(0,13515284	32,711434	26,298001	4,2742129	6,6108442 1,679206 0,132710	5172
5B	2,5186	X	X	X	X	666271	4,042	786836	5,874	240609	1,743	9001	0,09	20	0,10074			(0,07398219	32,67768	26,317251	4,7609665	6,1024303 1,792141 0,073433	5831
5C	2,5201	X	X	X	X	665574	4,038	786967	5,875	248753	1,802	16108	0,137	20	0,1008			(0,12243196	31,711433	25,460896	4,1522223	5,6541921 1,614896 0,12145	5463
5AF	X	X	X	X	X	657414	3,988	772722	5,769	285072	2,066	53638	0,382	20										
5AD	X	311836	2,24	271091	1,797	45154	0,292	56644	0,448	X	X	X	X	20	0,00679	2,220801052 1,7853888 0,290179 0,44	4881							

APENDICE G: Os cálculos dos resultados foram realizados na planilha do Microsoft Office Excel 2003, a partir da reta do gráfico exploratório construído através da curva de linearidade com X para concentração e Y para área do pico, considerando a massa da amostra pesada, o volume de injeção e a diluição das amostras, para cada amostra em triplicata. Continuação.

5BD	X	308069	2,214	268274	1,78	50112	0,322	51341	0,408	X	X	X	X	20	0,00672	2,194720116 1,7675368 0,319759 0,40986
5CD	X	298879	2,15	259359	1,723	43287	0,281	47274	0,378	X	X	X	X	20	0,00672	2,131092879 1,7110401 0,27904 0,37998
5ADF	X	344576	2,469	318848	2,101	129851	0,804	110574	0,849	X	X	X	X	20		
5AR										59936	0,431			20	0,02546	0,4275
5BR										63227	0,455			20	0,02519	0,4514
5CR										57103	0,41			20	0,0252	0,407
6A	2,5306	X	X	X	X	111771	0,694	657523	4,913	145114	1,049	14533	0,127	20	0,10122	0,11169489 36,069918 28,858168 0,7379383 5,1142676 0,913045 0,110344276
6B	2,525	X	X	X	X	128854	0,798	752970	5,622	167059	1,209	15503	0,133	20	0,101	0,11830756 39,833609 31,903253 1,0698088 3,4977153 1,140471 0,117136202
6C	2,5739	X	X	X	X	142858	0,882	764517	5,708	167878	1,215	15785	0,135	20	0,10296	0,12023001 38,624628 30,980175 0,8833754 5,7606746 0,848167 0,116778053
6AF	X	X	X	X	X	107214	0,667	632026	4,724	188903	1,367	58048	0,411	20		
6AD	X	342643	2,455	296670	1,96	4863	0,049	42530	0,343	X	X	X	X	20	0,00675	2,434094229 1,9474261 0,049798 0,34512
6BD	X	378468	2,705	328344	2,161	8590	0,072	27610	0,232	X	X	X	X	20	0,00673	2,682129678 2,1481524 0,072034 0,23551
6CD	X	373985	2,674	324911	2,139	6679	0,06	49373	0,394	X	X	X	X	20	0,00686	2,651091494 2,1263966 0,060633 0,3954
6ADF	X	373718	2,672	345353	2,269	91972	0,575	102311	0,797	X	X	X	X	20		
6AR										43480	0,312			20	0,03374	0,3081
6BR										53947	0,388			20	0,03367	0,384
6CR										41136	0,294			20	0,03432	0,2911
7A	2,5505	X	X	X	X	1403596	8,493	241486	1,821	68083	0,49	32700	0,245	20	0,10202	0,4866 0,23554278 30,532521 30,843808 7,697318 1,8617117 0,47694 0,230879028
7B	2,563	X	X	X	X	1431807	8,663	240811	1,816	67237	0,484	28061	0,215	20	0,10252	0,4804 0,20391784 30,619337 31,097927 7,7354596 1,9079895 0,468631 0,198905423
7C	2,5403	X	X	X	X	1407238	8,515	235228	1,775	66784	0,481	27458	0,211	20	0,10161	0,4772 0,19980707 31,134154 31,554311 7,8582193 1,7236456 0,469587 0,196637281
7AF	X	X	X	X	X	X	X	X	X	60664	0,436	55517	0,394	20		
7AD	X	291011	2,095	320387	2,111	84265	0,528	12788	0,122	X	X	X	X	20	0,0068	2,076618548 2,0977902 0,52352 0,12662
7BD	X	293338	2,111	324750	2,138	85132	0,534	13303	0,126	X	X	X	X	20	0,00683	2,092729602 2,1254396 0,528693 0,1304
7CD	X	295698	2,128	326658	2,151	85741	0,537	11446	0,112	X	X	X	X	20	0,00677	2,109069131 2,1375311 0,532326 0,11676

APENDICE G: Os cálculos dos resultados foram realizados na planilha do Microsoft Office Excel 2003, a partir da reta do gráfico exploratório construído através da curva de linearidade com X para concentração e Y para área do pico, considerando a massa da amostra pesada, o volume de injeção e a diluição das amostras, para cada amostra em triplicata. Continuação.

7ADF	X	345645	2,476	397655	2,602	174548	1.073	100939	0.777	X	X	X	X	20										
8A	2,5384	X	X	X	X	1536716	9,295	163607	1,243	47058	0,337	26464	0.204		0.10154			0.3341	0.19303079	30.47084	32.096028	8.7508582	1.3961915	0.329089 0.190110686
8B	2,5706	X	X	X	X	1528291	9,245	163429	1,241	46536	0,334	27414	0,211		0,10282			0,3304	.,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,	,	0,321287 0,194027773
8C	2,52	X	X	X	X	1515581	9,169	162103	1,231	47089	0,338	28658	0,219	20	0,1008			0,3344	0,2079877	31,237935	33,084721	8,9639065	1,3365275	0,331715 0,206337006
8AF	X	X	X	X	X	X	X	X	X	89184	0,643	73406	0,511	20										
8AD	X	288985	2,081	332192	2,186	95802	0,598	8417	0,089	X	X	X	X	20	0,00677	2,062591477 2,1726015 0,592351 0,0	09451							
8BD	X	292978	2,109	335364	2,206	96517	0,602	8638	0,091	X	X	X	X	20	0,00685	2,090237131 2,1927033 0,596617 0,0	09613							
8CD	X	294271	2,118	340191	2,237	97482	0,608	7778	0,085	X	X	X	X	20	0,00672	2,099189255 2,2232932 0,602375 0,0	08981							
8ADF	X	335459	2,405	400440	2,619	173228	1,065	86342	0,668	X	X	X	X	20										
9A	2,5339	X	X	X	X	X	X	TRAÇOS	TRAÇOS	14441	0,101	24780	0,193	20	0,10136	1	ND	0,0977	0,18155064	29,803713	31,733705	10,333187	ND	0,096366 0,179121747
9B	2,5427	X	X	X	X	X	X	TRAÇOS	TRAÇOS	15975	0,112	28500	0,218	20	0,10171	1	ND	0,1088	0,20691059	30,125339	32,363167	9,6820294	ND	0,106967 0,203435901
9C	2,5666	X	X	X	X	X	X	TRAÇOS	TRAÇOS	15829	0,111	26141	0,202	20	0,10266	1	ND	0,1077	0,19082883	30,021638	31,419677	10,233614	ND	0,10494 0,185877069
9AF	X	X	X	X	X	X	X	X	X	61159	0,44	74339	0,517	20										
9AD	X	281946	2,032	327721	2,157	113547	0,705	TRAÇOS	TRAÇOS	X	X	X	X	20	0,00676	2,013856752 2,1442676 0,69822	ND							
9BD	X	286106	2,061	335631	2,208	106553	0,663	TRAÇOS	TRAÇOS	X	X	X	X	20	0,00678	2,042658635 2,1943953 0,656493	ND							
9CD	X	287854	2,073	328696	2,163	113915	0,707	TRAÇOS	TRAÇOS	X	X	X	X	20	0,00684	2,054760965 2,1504465 0,700416	ND							
9ADF	X	325996	2,339	387916	2,54	176421	1,085	77710	0,604	X	X	X	X	20										
10A	2,55	X	X	X	X	989155	5,991	298391	2,244	48451	0,348	11119	0,104	20	0,102			0,3442	0,088421	31,361288	32,974701	5,4490719	2,577724	0,337494 0,086687257
10B	2,5826	X	X	X	X	1041343	6,306	318944	2,397	50350	0,361	11835	0,109	20	0,1033			0,358	0,09330211	39,469869	41,14407	6,5920638	2,2935398	0,346561 0,090318004
10C	2,5336	X	X	X	X	1005829	6,092	310436	2,334	48998	0,352	13167	0,118	20	0,10134			0,3482	0,10238261	32,621531	33,855801	5,6938917	2,9754271	0,343591 0,101024834
10AF	X	X	X	X	X	X	X	X	X	89980	0,649	65667	0,46	20										
10AD	X	299092	2,152	343187	2,256	58623	0,374	19412	0,171	X	X	X	X	20	0,0068	2,132567591 2,2422796 0,370537 0,1	17529							
10BD	X	383687	2,742	436490	2,848	72611	0,458	17053	0,154	X	X	X	X	20	0,00689	2,718263579 2,8335646 0,453991 0,1	15795							

APENDICE G: Os cálculos dos resultados foram realizados na planilha do Microsoft Office Excel 2003, a partir da reta do gráfico exploratório construído através da curva de linearidade com X para concentração e Y para área do pico, considerando a massa da amostra pesada, o volume de injeção e a diluição das amostras, para cada amostra em triplicata. Continuação.

10CD	X	309409	2,226	350305	2,301	60996	0,388	22916	0,197	X	X	X	X	20	0,00676	2,203997646 2,2873882 0,384695 0,20103
10ADF	X	365465	2,614	423143	2,764	132657	0,821	80241	0,623	X	X	X	X	20		
11A	2,5955	X	X	X	X	1311568	7,937	77305	0,601	14733	0,103	13007	0,117	20	0,10382	0,6006 0,0998 0,10129186 33,818668 34,405496 6,936766 0,5785043 0,096118 0,097564879
11B	2,5441	X	X	X	X	1353216	8,189	81089	0,629	15992	0,112	13673	0,121	20	0,10176	0,6284 0,1089 0,10583211 35,11057 36,315235 8,3722786 0,6175099 0,107029 0,103997589
11C	2,4968	X	X	X	X	1305771	7,902	78250	0,608	14250	0,099	11855	0,109	20	0,09987	0,60755 0,0963 0,09343845 34,637898 35,706173 8,4135006 0,6083244 0,096411 0,093558209
11AF	X	X	X	X	X	X	X	X	X	57563	0,414	65692	0,46	20		
11AD	X	329154	2,361	365127	2,395	76990	0,484	ND	ND	X	X	X	X	20	0,00692	2,340702738 2,381319 0,480117
11BD	X	335118	2,403	378130	2,478	91720	0,573	ND	ND	X	X	X	X	20	0,00678	2,381994669 2,4637224 0,567998
11CD	X	324176	2,326	364503	2,391	90410	0,565	ND	ND	X	X	X	X	20	0,00666	2,306237408 2,3773646 0,560182
11ADF	X	394726	2,819	459852	2,997	173466	1,067	82989	0,644	X	X	X	X	20		
12A	2,5528	X	X	X	X	1557781	9,424	83787	0,65	25558	0,181	17365	0,145	20	0,10211	0,64822 0,1783 0,13100117 33,307187 31,925125 9,5882464 0,6348166 0,174583 0,128291653
12B	2,593	X	X	X	X	1641820	9,931	81769	0,635	24657	0,175	18239	0,151	20	0,10372	0,6334 0,1717 0,1369594 34,067651 32,681747 9,2389911 0,6106811 0,165579 0,13204724
12C	2,5191	X	X	X	X	1395809	8,446	15682	0,143	25136	0,178	17152	0,144	20	0,10076	0,14788 0,1752 0,12954911 33,953432 33,137012 9,2490914 0,1467611 0,173882 0,12856686
12AF	X	X	X	X	X	X	X	X	X	58726	0,422	60986	0,43	20		
12AD	X	318563	2,287	332301	2,186	105920	0,659	ND	ND	X	X	X	X	20	0,00681	2,267375636 2,1732923 0,652717
12BD	X	331315	2,376	345957	2,273	103595	0,645	ND	ND	X	X	X	X	20	0,00691	2,355664486 2,2598338 0,638845
12CD	X	320510	2,301	340620	2,239	100657	0,627	ND	ND	X	X	X	X	20	0,00672	2,280855748 2,2260119 0,621317
12ADF	X	406015	2,897	442949	2,889	191553	1,176	85493	0,662	X	X	X	X	20		
13A	2,5603	X	X	X	X	1061950	6,43	28700	2,16	29887	0,213	20569	0,166	20	0,10241	0,2097 0,15284345 38,591593 40,535896 3,2653538 1,7197579 0,204718 0,149243692
13B	2,581	X	X	X	X	833502	5,051	223228	1,686	22564	0,16	15396	0,132	20	0,10324	0,1566 0,11757813 34,849926 36,952513 4,4278536 1,5743537 0,15165 0,113888149
13C	2,5027	X	X	X	X	780641	4,732	209402	1,583	20717	0,146	11980	0,11	20	0,10011	0,1432 0,0942906 35,552568 37,693658 4,6132275 1,5919061 0,143019 0,094188879
13AF	X	X	X	X	X	X	X	X	X	62632	0,451	64581	0,453	20		
13AD	X	371636	2,657	426077	2,782	33884	0,345	11535	0,113	X	X	X	X	20	0,00683	2,634828123 2,7675748 0,222941 0,11742

APENDICE G: Os cálculos dos resultados foram realizados na planilha do Microsoft Office Excel 2003, a partir da reta do gráfico exploratório construído através da curva de linearidade com X para concentração e Y para área do pico, considerando a massa da amostra pesada, o volume de injeção e a diluição das amostras, para cada amostra em triplicata. Continuação.

13BD	X	337517	2,42	390690	2,557	47597	0,307	10302	0,103	X	X	X	X	20	0,00688	2,398604216 2,5433183 0,304754 0,10836					
13CD	X	333780	2,393	386320	2,53	48121	0,31	10014	0,101	X	X	X	X	20	0,00667	2,372730986 2,5156245 0,307881 0,10624					
13ADF	X	471212	3,352	552812	3,588	150415	0,928	90231	0,697	X	X	X	X	20							
13AR						1177172	7,126	314580	2,365	32782	0,234	21951	0,175	20							
13BR						1091704	6,61	294315	2,214	29378	0,209	17697	0,147	20							
13CR						1016211	6,154	274695	2,068	28551	0,203	20002	0,162	20							
14A	2,5603	X	X	X	X	184740	1,135	481039	3,602	33918	0,242	11575	0,107	20	0,10241	1,122967	0,2389	0,09152964	36,28002 33,366849	1,0965186 3,1212988 0,233254 0,0	89373942
14B	2,5909	X	X	X	X	191813	1,178	504968	3,779	34757	0,248	12723	0,115	20	0,10364	1,165165	0,245	0,09935578	38,713811 35,592673	1,124286 3,7063765 0,236368 0,0	95869944
14C	2,5298	X	X	X	X	175118	1,777	455998	3,415	31168	0,222	10048	0,097	20	0,10119	1,065561	0,2189	0,08111979	36,263081 33,353261	1,0530087 2,9685708 0,216363 0,0	80164234
14AF	X	X	X	X	X	X	X	X	X	61621	0,443	55026	0,391	20							
14AD	X	348841	2,498	390959	2,559	8561	0,071	24560	0,209	X	X	X	X	20	0,00683	2,477006266 2,2781105 0,21311					
14BD	X	377404	2,698	424112	2,77	10998	0,086	30409	0,253	X	X	X	X	20	0,00691	2,674763042 2,4591215 0,25608					
14CD	X	344414	2,468	394821	2,584	9447	0,077	22812	0,196	X	X	X	X	20	0,00675	2,4463558 2,2500555 0,20026					
14ADF	X	416144	2,968	483215	3,145	93174	0,582	95297	0,735	X	X	X	X	20							
15A	2,5157	X	X	X	X	962233	5,828	313775	2,359	36594	0,262	24386	0,191	20	0,10063		0,2583	0,17886467	33,332308 35,376422	5,0553993 1,9483534 0,256669 0,1	77748405
15B	2,5456	X	X	X	X	977425	5,92	321217	2,414	38729	0,277	28813	0,22	20	0,10182		0,2738	0,20904437	35,900518 37,959494	5,3727111 2,047222 0,268855 0,	2052997
15C	2,5732	X	X	X	X	1031688	6,248	335146	2,517	39735	0,284	28256	0,216	20	0,10293		0,2811	0,20524719	35,380448 37,191513	5,3569917 2,1262254 0,273058 0,	19940851
15AF	X	X	X	X	X	X	X	X	X	66295	0,477	71247	0,497	20							
15AD	X	314047	2,256	363852	2,387	53361	0,342	13344	0,126	X	X	X	X	20	0,00671	2,236108976 2,373239 0,339143 0,13071					
15BD	X	343066	2,458	395972	2,591	57647	0,368	14469	0,134	X	X	X	X	20	0,00679	2,437022882 2,5767917 0,364714 0,13897					
15CD	X	341728	2,449	392065	2,566	58129	0,371	15412	0,141	X	X	X	X	20	0,00686	2,4277592 2,552032 0,36759 0,1459					
15ADF	X	406919	2,904	479701	3,123	151496	0,934	99858	0,769	X	X	X	X	20							
16A	2,5283	X	X	X	X	130487	0,807	409070	3,067	21624	0,153	8192	0,085	20	0,10113	0,799286	0,1497	0,06846709	34,895809 37,717865	0,7903398 2,6690415 0,148073 0,0	67700715

APENDICE G: Os cálculos dos resultados foram realizados na planilha do Microsoft Office Excel 2003, a partir da reta do gráfico exploratório construído através da curva de linearidade com X para concentração e Y para área do pico, considerando a massa da amostra pesada, o volume de injeção e a diluição das amostras, para cada amostra em triplicata. Continuação.

16B	2,5331	X	X	X	X	130337	0,807	40479	3,035	22359	0,158	8857	0,09	20	0,10132	0,798392	0,1551	0,07300052	35,269597	38,220833	0,787959	3,2984859 0,153051 0,	072046621
16C	2,4925	X	X	X	X	127677	0,79	398006	2,985	22514	0,154	7285	0,079	20	0,0997	0,782522	0,1562	0,0622839	35,826912	38,75426	0,7848763	2,8198976 0,156671 0,	062471309
16AF	X	X	X	X	X	X	X	X	X	51079	0,367	80511	0,557	20									
16AD	X	330890	2,373	390638	2,557	6960	0,062	20047	0,146	X	X	X	X	20	0,00674	2,352721986 2,5429888 0,17995							
16BD	X	335182	2,403	396761	2,596	6718	0,06	25881	0,219	X	X	X	X	20	0,00675	2,382437775 2,5817918 0,22281							
16CD	X	335017	2,402	395826	2,59	7052	0,062	21065	0,183	X	X	X	X	20	0,00665	2,381295392 2,5758665 0,18743							
16ADF	X	420170	2,996	507305	3,298	99342	0,619	106042	0,815	X	X	X	X	20									
17A	2,5599	X	X	X	X	690092	4,186	226049	1,707	27491	0,195	TRAÇOS	TRAÇOS	20	0,1024		0,1923	ND	32,936503	36,24297	4,0025402	1,6596514 0,187785	ND
17B	2,5519	X	X	X	X	718791	4,359	243564	1,837	28170	0,2	TRAÇOS	TRAÇOS	20	0,10208		0,1972	ND	32,579888	34,631904	4,0319208	1,7003725 0,193196	ND
17C	2,5561	X	X	X	X	704080	4,27	236355	1,783	26010	0,185	TRAÇOS	TRAÇOS	20	0,10224		0,1815	ND	31,962012	34,9269	4,1664781	1,8648543 0,177563	ND
17AF	X	X	X	X	X	X	X	X	X	55861	0,401	68075	0,476	20									
17AD	X	315819	2,268	379766	2,488	42313	0,275	10974	0,108	X	X	X	X	20	0,00683	2,248377471 2,4740901 0,273229 0,11329							
17BD	X	311299	2,237	361246	2,37	42505	0,276	11303	0,111	X	X	X	X	20	0,00681	2,217083117 2,3567241 0,274375 0,11571							
17CD	X	305743	2,198	365031	2,394	44118	0,286	12855	0,122	X	X	X	X	20	0,00682	2,178615986 2,3807107 0,283998 0,12711							
17ADF	X	379270	2,711	460433	3,001	137806	0,852	91789	0,709	X	X	X	X	20									
18A	2,4885	X	X	X	X	1000528	6,06	169628	1,287	24675	0,175	14678	0,128	20	0,09954		0,1719	0,11268338	33,231419	31,646744	5,9819297	0,1080913 0,172663 0,	113204121
18B	2,5031	X	X	X	X	1008745	6,109	172932	1,312	25655	0,182	16193	0,137	20	0,10012		0,179	0,12301143	33,826204	32,321753	5,9883326	0,1785889 0,178752 0	,12285908
18C	2,5076	X	X	X	X	1012541	6,132	171779	1,303	26160	0,186	14647	0,127	20	0,1003		0,1826	0,11247205	35,089858	33,519273	5,9412734	0,1033981 0,182081 0,	112131171
18AF	X	X	X	X	X	993327	6,016	167056	1,268	68112	0,49	62912	0,442	20									
18AD	X	309588	2,225	320748	2,113	63052	0,4	3702	0,054	X	X	X	X	20	0,00664	2,205236958 2,1000779 0,396961 0,00717							
18BD	X	317191	2,278	329802	2,171	63514	0,403	9096	0,094	X	X	X	X	20	0,00667	2,257876553 2,1574555 0,399717 0,01192							
18CD	X	329982	2,367	343050	2,255	63107	0,401	3408	0,052	X	X	X	X	20	0,00669	2,346435421 2,2414114 0,397289 0,00691							
18ADF	X	358643	2,567	378657	2,481	148173	0,914	77428	0,602	X	X	X	X	20									

APENDICE G: Os cálculos dos resultados foram realizados na planilha do Microsoft Office Excel 2003, a partir da reta do gráfico exploratório construído através da curva de linearidade com X para concentração e Y para área do pico, considerando a massa da amostra pesada, o volume de injeção e a diluição das amostras, para cada amostra em triplicata. Continuação.

19A	2,53	X	X	X	X	1285272	7,778	114036	0,874	21909	0,155	11815	0,109	20	0,1012		0,1518	0,09316577	35,24108 34,435	7,4569893	1,003478 0,150015 0,092061034
19B	2,5752	X	X	X	X	1239338	7,501	99150	0,764	24187	0,171	12154	0,111	20	0,10301		0,1683	0,09547679	34,83294 33,812	665 7,3428715	1,4643923 0,163415 0,092688718
19C	2,5567	X	X	X	X	1197507	7,249	92198	0,712	17731	0,125	11875	0,109	20	0,10227		0,1215	0,0935748	34,012621 33,093	395 6,6605932	0,7396655 0,11883 0,091499588
19AF	X	X	X	X	X	1214515	7,351	93628	0,723	65726	0,473	60158	0,424	20							
19AD	X	334483	2,398	355967	2,337	80842	0,508	4768	0,062	X	X	X	X	20	0,00675	2,377598228 2,3232698 0,503098 0,0677					
19BD	X	336570	2,413	355764	2,335	81035	0,509	9241	0,096	X	X	X	X	20	0,00687	2,392047634 2,3219833 0,50425 0,10056					
19CD	X	326010	2,339	345399	2,27	72631	0,458	2417	0,045	X	X	X	X	20	0.00682	2,318935161 2,2562976 0,45411 0,05043					
19ADF	X	373239	2,669	400839	2,622	155269	0,957	67960	0,553	X	X	X	X	20	-,						
															0.10224		0.1612	0.10616615	22.005000 22.55	15 6 600000	1.0101027.0.1575220.10204012
20A	2,556	X	X	X	X	1181849	7,154	132816	1,014	23197	0,164	13722	0,121	20	0,10224		0,1612	0,10616615	33,806998 32,650	315 6,622328	1,0101927 0,157622 0,10384013
20B	2,5243	X	X	X	X	1153603	6,984	135523	1,034	24752	0,176	14495	0,126	20	0,10097		0,1724	0,11143584	34,360625 33,161	388 7,4196744	1,5359387 0,170767 0,110363107
20C	2,5053	X	X	X	X	1129876	6,84	132712	1,013	23047	0,163	12107	0,111	20	0,10021		0,1601	0,09515639	34,267927 33,007	864 6,7969774	1,2103208 0,159727 0,094955082
20AF	X	X	X	X	X	155532	6,995	141028	1,075	71756	0,517	65121	0,46	20							
20AD	X	323894	2,324	340536	2,239	72173	0,455	4925	0,063	X	X	X	X	20	0,00682	2,304284972 2,2254796 0,451378 0,06885					
20BD	X	325149	2,333	341604	2,246	80231	0,504	9626	0,098	X	X	X	X	20	0,00673	2,312974002 2,2322478 0,499453 0,10339					
20CD	X	321740	2,309	337329	2,218	72628	0,458	6559	0,076	X	X	X	X	20	0.00668	2,28937169 2,205156 0,454092 0,08086					
															0,00000	2,20,37107 2,203130 0,434072 0,00000					
20ADF	X	381501	2,726	405024	2,649	165955	1,022	80747	0,627	X	X	X	X	20							
21A	2,5696	X	X	X	X	1163561	7,044	194428	1,472	32552	0,229	17330	0,145	20	0,10278		0,229	0,13076257	37,761413 36,292	789 6,7556676	1,3453592 0,222774 0,127220745
21B	2,5061	X	X	X	X	1068154	6,468	174899	1,327	27958	0,199	16091	0,137	20	0,10024		0,1957	0,12231607	35,100501 34,027	92 6,1984571	1,6443821 0,195194 0,122018347
21C	2,496	X	X	X	X	1078974	6,533	178169	1,351	25615	0,182	15183	0,131	20	0,09984		0,1787	0,11612606	36,411504 35,128	736 0,9231358	1,190327 0,17897 0,116312163
21AF	X	X	X	X	X	1037138	6,281	171751	1,303	74333	0,536	62796	0,441	20							
21AD	X	364802	2,61	381784	2,501	74107	0,467	8101	0,087	X	X	X	X	20	0,00685	2,587512722 2,4868787 0,462916 0,09219					
21BD	X	329882	2,366	348201	2,287	65948	0,418	10511	0,105	X	X	X	X	20	0.00668	2.345743068 2.2740546 0.414239 0.10989					
															.,	, ,					
21CD	X	341120	2,445	358318	2,352	6815	0,423	6337	0,074	X	X	X	X	20	0,00666	2,423549694 2,3381687 0,061444 0,07923					

APENDICE G: Os cálculos dos resultados foram realizados na planilha do Microsoft Office Excel 2003, a partir da reta do gráfico exploratório construído através da curva de linearidade com X para concentração e Y para área do pico, considerando a massa da amostra pesada, o volume de injeção e a diluição das amostras, para cada amostra em triplicata. Continuação.

21ADF	X	399308	2.85	425531	2,779	155464	0,958	78219	0,608	X	X	X	X	20								
22A	2,5746	X	X	X	X	1395201	8,442	231350	1,746	47636	0,342	20725	0,167		0.10298		0.3383	0.15390693	35.892454	34.802018	7.7283278	1,6915869 0,328531 0,149447421
22B	2,5837	X	X	X	X	1370768	8,295	227221	1,715	27958	0,199	16091	0,137		0,10335		0,1957					1.8226477 0.189331 0.118353594
22C	2,5249	X	X	X	X	1202382	7,278	196973	1,491	42503	0,304	19695	0,157	20	0,101			.,		,	.,	1,6413038 0,298151 0,145436676
															0,101		0,5011	0,14088323	32,092180	32,022074	7,2208093	1,0413038 0,298131 0,143430070
22AF	X	X	X	X	X	1244861	7,535	209225	1,582	80863	0,583	62037	0,437	20	0.0040							
22AD	X	346996	2,486	366397	2,403	85451	0,536	11361	0,111	X	X	X	X			2,464232354 2,3893674 0,530596 0,11614						
22BD	X	355011	2,542	372418	2,441	88063	0,551	12646	0,121	X	X	X	X	20	0,00689	2,519724444 2,427524 0,54618 0,12558						
22CD	X	309003	2,221	329583	2,169	78075	0,491	10595	0,106	X	X	X	X	20	0,00673	2,201186693 2,1560676 0,48659 0,11051						
22ADF	X	377928	2,701	406620	2,659	157409	0,97	73118	0,57	X	X	X	X	20								
23A	2,5596	X	X	X	X	1468090	8,882	208449	1,576	36235	0,259	25776	0,2	20	0,10238		0,2555	0,18834056	39,911973	38,887277	8,4325	1,7682327 0,249597 0,183955071
23B	2,5576	X	X	X	X	1407391	8,516	193949	1,468	31846	0,227	23618	0,186	20	0,1023		0,2237	0,17362906	37,972898	36,839668	8,1156063	1,7776943 0,218689 0,169718743
23C	2,5842	X	X	X	X	1502076	9,087	204271	1,545	37667	0,269	29383	0,223	20	0,10337		0,2659	0,21293016	41,71935	40,291401	8,7933324	1,8709086 0,257265 0,205992343
23AF	X	X	X	X	X	1446883	8,754	201602	1,525	81102	0,585	69412	0,485	20								
23AD	X	384549	2,748	408201	2,669	92989	0,581	11981	0,116	X	X	X	X	20	0,00683	2,724231661 2,65429 0,575569 0,12069						
23BD	X	365140	2,612	385837	2,527	89291	0,559	12056	0,116	X	X	X	X	20	0,00682	2,589852875 2,5125636 0,553506 0,12124						
23CD	X	406320	2,899	427495	2,791	98084	0,612	13102	0,124	X	X	X	X	20	0,00689	2,874963825 2,776561 0,605966 0,12893						
23ADF	X	425921	3,036	454505	2,963	173989	1,07	81444	0,632	X	X	X	X	20								
24A	2,5614	X	X	X	X	TRAÇOS	TRAÇOS	X	X	37234	0,266	5975	0,071	20	0,10246		0,2629	0,05335338	36,148277	33,096817	ND	2,8932268 0,256618 0,520744279
24B	2,5482	X	X	X	X	TRAÇOS	TRACOS	X	X	34856	0,249	6199	0,072	20	0,10193		0,2457	0,05488043	36,882773	33,99579	ND	3,3632695 0,241033 0,538423461
24C	2,4949	X	X	X	X	TRAÇOS			X	39882	0,285	6469	0.074	20	0,0998		0,2821	0,05672107	38 968102	36 377086	ND	40,809976 0,282695 0,568370154
24AF	X	X	X	X	X	X	X	X	X	82144	0,592	71068	0,495	20	0,0770		0,2021	0,03072107	30,700102	30,377000	ND	40,007770 0,202073 0,300370134
															0.00682	2.40071001 2.20045 ND 0.10762						
24AD	X	347695	2,49	346085	2,274	TRAÇOS	-		0,194	X	X	X	X			2,469071901 2,260645 ND 0,19762						
24BD	X	353066	2,528	353886	2,324	TRAÇOS	TRAÇOS	26661	0,225	X	X	X	X	20	0,0068	2,506258178 2,3100819 ND 0,22854						

APENDICE G: Os cálculos dos resultados foram realizados na planilha do Microsoft Office Excel 2003, a partir da reta do gráfico exploratório construído através da curva de linearidade com X para concentração e Y para área do pico, considerando a massa da amostra pesada, o volume de injeção e a diluição das amostras, para cada amostra em triplicata. Continuação.

24CD	X	365533	2,615	371261	2,434	TRAÇOS	TRAÇOS	365126	0,288	X	X	X	X	20	0,00665	2,592573822 2,4201918 ND 2,7151					
24ADF	X	382162	2,731	396748	2,596	87288	0,547	107565	0,826	X	X	X	X	20							
25A	2,5275	X	X	X	X	1158084	7,011	206570	1,562	29911	0,213	15912	0,136	20	0,1011		0,2098	0,1210958	37,584843 39,01681	2 7,0190302	1,7040346 0,207546 0,119778235
25B	2,4941	X	X	X	X	1150534	6,965	206379	1,561	28166	0,2	15685	0,134	20	0,09976		0,1972	0,11954829	33,342204 35,01809	8 6,2446958	1,4879293 0,197645 0,119831094
25C	2,5478	X	X	X	X	1088510	6,591	192891	1,46	26777	0,19	13479	0,12	20	0,10191		0,1871	0,10450957	29,844413 31,42131	6 5,7882564	1,5371264 0,183598 0,102548838
25AF	X	X	X	X	X	X	X	X	X	66067	0,476	59408	0,419	20							
25AD	X	356960	2,555	404326	2,644	75811	0,477	11186	0,11	X	X	X	X	20	0,00674	2,533218403 2,6297331 0,473083 0,11485					
25BD	X	311369	2,237	356876	2,343	66131	0,419	9023	0,094	X	X	X	X	20	0,00665	2,217567764 2,3290303 0,415331 0,09896					
25CD	X	283941	2,046	326228	2,148	62432	0,397	9768	0,099	X	X	X	X	20	0,00679	2,027669194 2,1348061 0,393262 0,10443					
25ADF	X	428202	3,052	493659	3,212	158162	0,974	79453	0,617	X	X	X	X	20							
	2.5139	X	X	X	X	1206086	7,3	203733	1,541	37825	0,27	15221	0.131		0,10056		0.2672	0.11638512	31 825687 33 33865	8 7.014284	1.5428408 0.265728 0.115741593
26B	2,5369	X	X	X	X	1257407		214924	1,624	41751		16655	0,14		0,10148		0,2957	.,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,-	1,6780646 0,291368 0,124325917
							7,61				0,299										
26C	2,5761	X	X	X	X	1251180	7,573	212931	1,609	41678	0,298	17959	0,149	20	0,10304		0,2951	0,13505058	32,804868 34,44393	2 7,1355181	1,6020523 0,286421 0,131061084
26AF	X	X	X	X	X	X	X	X	X	123583	0,893	112296	0,764	20							
26AD	X	299228	2,152	342028	2,248	75331	0,474	9631	0,098	X	X	X	X	20	0,0067	2,133509191 2,2349348 0,470219 0,10343					
26BD	X	323832	2,324	371042	2,433	84858	0,532	11005	0,109	X	X	X	X	20	0,00677	2,303855714 2,4188039 0,527058 0,11352					
26CD	X	316568	2,273	362735	2,38	78677	0,495	10533	0,105	X	X	X	X	20	0,00687	2,253563195 2,3661603 0,490182 0,11005					
26ADF	X	355639	2,546	420325	2,746	161928	0,997	88265	0,683	X	X	X	X	20							
27A	2,509	X	X	X	X	1143438	6,922	282474	2,126	33354	0,238	44490	0,322	20	0,10036		0,2348	0,31591746	34,621173 36,0382	6,978047	1,9871563 0,233949 0,314784234
27B	2,5608	X	X	X	X	1249842	7,565	305841	2,3	38926	0,278	42487	0,309	20	0,10243		0,2752	0,30226263	37,68526 39,32508	3 7,7806341	2,4920825 0,268654 0,295086131
27C	2,5175	X	X	X	X	1124584	6,808	276747	2,081	33921	0,242	33834	0,253	20	0,1007		0,2389	0,24327348	34,070407 35,40644	5 6,6597944	2,0604426 0,237241 0,241582402
27AF	X	X	X	X	X	X	X	X	X	73265	0,528	82085	0,567	20							
27AD	X	325642	2,337	369842	2,425	74771	0,471	13650	0,128	X	X	X	X	20	0,00669	2,316387302 2,4111992 0,466878 0,13295					

APENDICE G: Os cálculos dos resultados foram realizados na planilha do Microsoft Office Excel 2003, a partir da reta do gráfico exploratório construído através da curva de linearidade com X para concentração e Y para área do pico, considerando a massa da amostra pesada, o volume de injeção e a diluição das amostras, para cada amostra em triplicata. Continuação.

27BD	X	362771	2,596	413115	2,7	85573	0,536	18717	0,166	X	X	X	X	20	0,00683	2,573451033 2,6854313 0,531324 0,17018							
27CD	X	321435	2,307	364438	2,391	71455	0,451	14381	0,134	X	X	X	X	20	0,00671	2,287260013 2,3769527 0,447094 0,13832							
27ADF	X	355345	2,544	414809	2,711	159979	0,985	94791	0,731	X	X	X	X	20									
28A	2,5967	X	X	X	X	418039	2,543	372078	2,792	29176	0,208	16088	0,137	20	0,10387	2,514857	0,2045	0,12229562	37,5215 3	9,573592	2,4212052	2,0989199 0,196885 0,11	7741384
28B	2,5671	X	X	X	X	391536	2,383	345827	2,597	26581	0,189	15828	0,135	20	0,10268	2,356737	0,1857	0,12052315	36,83353 3	8,971774	2,2951358	2,1474829 0,180833 0,11	7372864
28C	2,5356	X	X	X	X	379085	2,308	327869	2,463	28057	0,2	19634	0,16	20	0,10142	2,282453	0,1964	0,14646938	36,304542 3	8,346791	2,2504072	2,5778039 0,193631 0,14	4412937
28AF	X	X	X	X	X	X	X	X	X	62325	0,448	58285	0,412	20									
28AD	X	366344	2,621	421771	2,755	23430	0,161	15336	0,141	X	X	X	X	20	0,00692	2,598188805 2,7402866 0,14534							
28BD	X	355264	2,543	410341	2,682	24415	0,167	15563	0,143	X	X	X	X	20	0,00685	2,521476097 2,6678517 0,14701							
28CD	X	345629	2,476	398507	2,607	23464	0,161	19278	0,17	X	X	X	X	20	0,00676	2,454767889 2,5928566 0,1743							
28ADF	X	418836	2,987	489585	3,186	107908	0,671	89011	0,688	X	X	X	X	20									
29A	2,5203	X	X	X	X	1243351	7,525	176638	1,34	22306	0,158	29618	0,225	20	0,10081		0,1547	0,2145322	32,978698 3	5,281302	7,2377518	1,4760687 0,153447 0,21	2804234
29B	2,5553	X	X	X	X	391536	2,383	345827	2,597	25564	0,181	36070	0,267	20	0,10221		0,1783	0,25851672	35,454647 3	7,990428	8,0923544	1,5063081 0,174455 0,25	2922079
29C	2,4972	X	X	X	X	1205541	7,297	172371	1,308	23456	0,166	30735	0,232	20	0,09989		0,163	0,22214701	32,396903 3	34,38403	7,3752127	1,5464288 0,163214 0,22	2239609
29AF	X	X	X	X	X	X	X	X	X	55168	0,396	63235	0,444	20									
29AD	X	311205	2,236	363528	2,385	78049	0,491	9056	0,094	X	X	X	X	20	0,00672	2,216432305 2,3711858 0,486435 0,0992							
29BD	X	340019	2,437	397854	2,603	88942	0,557	9524	0,098	X	X	X	X	20	0,00681	2,415926888 2,5887184 0,551424 0,10264							
29CD	X	302675	2,176	350670	2,303	78836	0,496	9570	0,098	X	X	X	X	20	0,00666	2,157374598 2,2897013 0,49113 0,10298							
29ADF	X	397528	2,838	467407	3,045	172110	1,059	89966	0,695	X	X	X	X	20									